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Synopsis This course is intended to act as an extension of the current 4th-year
course on Astrophysical Cosmology, which develops the basic tools for dealing with
observations in an expanding universe, and gives an overview of some of the central
topics in contemporary research. The aim here is to revisit this material at a level of
detail more suitable as a foundation for understanding current research. Cosmology
has a standard model for understanding the universe, in which the dominant theme
is the energy density of the vacuum. This is observed to be non-zero today, and is
hypothesised to have been much larger in the past, causing the phenomenon of ‘inflation’.
An inflationary phase can not only launch the expanding universe, but can also seed
irregularities that subsequently grow under gravity to create galaxies, superclusters
and anisotropies in the microwave background. The course will present the methods
for analysing these phenomena, leading on to some of the frontier issues in cosmology,
particularly the possible existence of extra dimensions and many universes. It is intended
that the course should be self contained; previous attendance at courses on cosmology
or general relativity will be useful, but not essential.

Recommended books (in reserve section of ROE library)

Peacock: Cosmological Physics (CUP) Gives an overview of cosmology at the
level of this course, but contains much more than will be covered here. More recent
developments to be covered in the lectures are not in the book.

Dodelson: Modern Cosmology (Wiley) Concentrating on the details of relativistic
perturbation theory, with applications to the CMB. Higher level than this course, but
contains many useful things.

Other good books for alternative perspectives and extra detail:

Mukhanov: Physical Foundations of Cosmology (CUP)
Peebles: Principles of Physical Cosmology (Princeton)
Weinberg: Gravitation & Cosmology (Wiley)
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Syllabus

(1) Review of Friedmann models FRW spacetime; Dynamics; Observables;
Horizons

(2) The hot big bang Thermal history; Freezeout; Relics; Recombination and
last scattering

(3) Inflation – I Initial condition problems; Planck era; Physics beyond the SM;
Scalar fields; Noether’s theorem

(4) Inflation – II The zoo of inflation models; Equation of motion; Slow-roll;
Ending inflation

(5) Fluctuations from inflation Gauge issues; Power spectra; Basics of
fluctuation generation; Tilt; Tensor modes; Eternal inflation

(6) Structure formation – I Newtonian analysis neglecting pressure; Pertur-
bation modes; Coupled perturbations; matter transfer functions

(7) Structure formation – II Nonlinear development: Spherical model;
Lagrangian approach; N-body simulations; Dark-matter haloes & mass function;
Gas cooling; Brief overview of galaxy formation

(8) Gravitational lensing Basics of light deflection; strong lensing and mass
measurement; weak lensing and mapping dark matter

(9) CMB anisotropies - I Anisotropy mechanisms; Overview of Boltzmann
approach; Power spectrum; Properties of the temperature field

(10) CMB anisotropies - II Geometrical degeneracies; Reionization; Polariza-
tion and tensor modes; The cosmological standard model

(11) Frontiers Measuring dark energy; Extra dimensions and modified gravity;
anthropics and the multiverse
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1 Review of Friedmann models

Topics to be covered:

• Cosmological spacetime and RW metric

• Expansion dynamics and Friedmann equation

• Calculating distances and times

1.1 Cosmological spacetime

One of the fundamentals of a cosmologist’s toolkit is to be able to assign coordinates to
events in the universe. We need a large-scale notion of space and time that allows us to
relate observations we make here and now to physical conditions at some location that
is distant in time and space. The starting point is the relativistic idea that spacetime
must have a metric: the equivalence principle says that conditions around our distant
object will be as in special relativity (if it is freely falling), so there will be the usual
idea of the interval or proper time between events, which we want to rewrite in
terms of our coordinates:

−ds2 = c2dτ2 = c2dt′2 − dx′2 − dy′2 − dz′2 = gµνdx
µdxν . (1)

Here, dashed coordinates are local to the object, undashed are the global coordinates
we use. As usual, the Greek indices run from 0 to 3. Note the ambiguity in defining the
sign of the squared interval. The matrix gµν is the metric tensor, which is found
in principle by solving Einstein’s gravitational field equations. A simpler alternative,
which fortunately matches the observed universe pretty well, is to consider the most
symmetric possibilities for the metric.

isotropic expansion Again according to Einstein, any spacetime with non-zero
matter content must have some spacetime curvature, i.e. the metric cannot have the
special relativity form diag(+1,−1,−1,−1). This curvature is something intrinsic to
the spacetime, and does not need to be associated with extra spatial dimensions; these
are nevertheless a useful intuitive way of understanding curved spaces such as the 2D
surface of a 3D sphere. To motivate what is to come, consider the higher-dimensional
analogue of this surface: something that is almost a 4D (hyper)sphere in Euclidean 5D
space:

x2 + y2 + z2 + w2 − v2 = R2 (2)

where the metric is

ds2 = dx2 + dy2 + dz2 + dw2 − dv2. (3)

Effectively, we have made one coordinate imaginary because we know we want to end
up with the 4D spacetime signature.
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This maximally symmetric spacetime is known as de Sitter space. It looks
like a static spacetime, but relativity can be deceptive, as the interpretation depends on
the coordinates you choose. Suppose we re-express things using the analogues of polar
coordinates:

v = R sinhα

w = R coshα cosβ

z = R coshα sinβ cos γ

y = R coshα sinβ sin γ cos δ

x = R coshα sinβ sin γ sin δ.

(4)

This has the advantage that it is an orthogonal coordinate system: a vector such
as eα = ∂(x, y, z, w, v)/∂α is orthogonal to all the other ei (most simply seen by
considering eδ and imagining continuing the process to still more dimensions). The
squared length of the vector is just the sum of |eαi

|2 dα2
i , which makes the metric into

ds2 = −R2dα2 +R2 cosh2 α
(

dβ2 + sin2(β)[dγ2 + sin2 γdδ2]
)

, (5)

which by an obvious change of notation becomes

c2dτ2 = c2dt2 −R2 cosh2(ct/R)
(

dr2 + sin2(r)[dθ2 + sin2 θdφ2]
)

. (6)

Now we have a completely different interpretation of the metric:

(interval)
2
= (time interval)

2 − (scale factor)
2
(comoving interval)

2
. (7)

There is a universal cosmological time, which is the ticking of clocks at constant
comoving radius r and constant angle on the sky. The spatial part of the metric
expands with time, according to a universal scale factor R(t) = R cosh(ct/R), so
that particles at constant r recede from the origin, and must thus suffer a Doppler
redshift. This of course presumes that constant r corresponds to the actual trajectory
of a free particle, which we have not proved – although it is true.

Historically, de Sitter space was extremely important in cosmology, although it
was not immediately clear that the model is non-static. It was eventually concluded (in
1923, by Weyl) that one would expect a redshift that increased linearly with distance in
de Sitter’s model, but this was interpreted as measuring the constant radius of curvature
of spacetime, R. By this time, Slipher had already established that most galaxies were
redshifted. Hubble’s 1929 ‘discovery’ of the expanding universe was explicitly motivated
by the possibility of finding the ‘de Sitter effect’ (although we now know that his sample
was too shallow to be able to detect it reliably).

In short, it takes more than just the appearance of R(t) in a metric to prove
that something is expanding. That this is the correct way to think about things only
becomes apparent when we take a local (and thus Newtonian, thanks to the equivalence
principle) look at particle dynamics. Then it becomes clear that a static distribution of
test particles is impossible in general, so that it makes more sense to use an expanding
coordinate system defined by the locations of such a set of particles.
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the robertson-walker metric The de Sitter model is only one example of an
isotropically expanding spacetime, and we need to make the idea general. What we are
interested in is a situation where, locally, all position vectors at time t are just scaled
versions of their values at a reference time t0:

x(t) = R(t)x(t0), (8)

where R(t) is the scale factor. Differentiating this with respect to t gives

ẋ(t) = Ṙ(t)x(t0) = [Ṙ(t)/R(t)]x(t), (9)

or a velocity proportional to distance, independent of origin, with

H(t) = Ṙ(t)/R(t). (10)

The characteristic time of the expansion is called the Hubble time, and takes the
value

tH ≡ H−1 = 9.78Gyr × (H/100 km s−1Mpc−1)−1. (11)

As with de Sitter space, we assume a cosmological time t, which is the
time measured by the clocks of these observers – i.e. t is the proper time measured
by an observer at rest with respect to the local matter distribution. It makes sense
that such a universal time exists if we accept that we are looking for models that are
homogeneous, so that there are no preferred locations. This is obvious in de Sitter
space: because it derives from a 4-sphere, all spacetime points are manifestly equivalent:
the spacetime curvature and hence the matter density must be a constant. The next
step is to to weaken this so that conditions can change with time, but are uniform at
a given time. A cosmological time coordinate can then be defined and synchronized by
setting clocks to a reference value at some standard density.

By analogy with the de Sitter result, we now guess that the spatial metric will
factorize into the scale factor times a comoving part that includes curvature. This
overall Robertson–Walker metric (RW metric), can be written as:

c2dτ2 = c2dt2 −R2(t)
[

dr2 + S2
k(r) dψ

2
]

. (12)

The angle dψ separates two points on the sky, so that dψ2 = dθ2+sin2 θ dφ2 in spherical
polars. The function Sk(r) allows for positive and negative curvature of the comoving
part of the metric:

Sk(r) ≡







sin r (k = +1)
sinh r (k = −1)
r (k = 0).

(13)

We only saw the k = +1 case of this in the de Sitter example, but mathematically we
can then generate the k = −1 case by letting R and r both become imaginary.
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The comoving radius r is dimensionless, and the scale factor R really is the
spatial radius of curvature of the universe. Both are required in order to give a comoving
distance dimensions of length – e.g. the combination R0Sk(r). Nevertheless, it is often
convenient to make the scale factor dimensionless, via

a(t) ≡ R(t)

R0
, (14)

so that a = 1 at the present.

light propagation and redshift Light follows trajectories with zero proper
time (null geodesics). The radial equation of motion therefore integrates to

r =

∫

c dt/R(t). (15)

The comoving distance is constant, whereas the domain of integration in time extends
from temit to tobs; these are the times of emission and reception of a photon. Thus
dtemit/dtobs = R(temit)/R(tobs), which means that events on distant galaxies time-
dilate. This dilation also applies to frequency, so

νemit

νobs
≡ 1 + z =

R(tobs)

R(temit)
. (16)

In terms of the normalized scale factor a(t) we have simply a(t) = (1 + z)−1. So just
by observing shifts in spectral lines, we can learn how big the universe was at the time
the light was emitted. This is the key to performing observational cosmology.

1.2 Cosmological dynamics

the friedmann equation The equation of motion for the scale factor resembles
Newtonian conservation of energy for a particle at the edge of a uniform sphere of radius
R:

Ṙ2 − 8πG

3
ρR2 = −kc2. (17)

This is almost obviously true, since the Newtonian result that the gravitational field
inside a uniform shell is zero does still hold in general relativity, and is known as
Birkhoff’s theorem. For the present course, we will accept this quasi-Newtonian
‘derivation’, and merely attempt to justify the form of the rhs.

This energy-like equation can be turned into a force-like equation by differenti-
ating with respect to time:

R̈ = −4πGR(ρ+ 3p/c2)/3. (18)
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To deduce this, we need to know ρ̇, which comes from conservation of energy:

d[ρc2R3] = −pd[R3]. (19)

The surprising factor here is the occurrence of the active mass density ρ+ 3p/c2.
This is here because the weak-field form of Einstein’s gravitational field equations is

∇2Φ = 4πG(ρ+ 3p/c2). (20)

The extra term from the pressure is important. As an example, consider a radiation-
dominated fluid – i.e. one whose equation of state is the same as that of pure
radiation: p = u/3, where u is the energy density. For such a fluid, ρ+ 3p/c2 = 2ρ, so
its gravity is twice as strong as we might have expected.

But the greatest astonishment in the Friedmann equation is the term on the
rhs. This is related to the curvature of spacetime, and k = 0,±1 is the same integer
that is found in the RW metric. This cannot be completely justified without the Field
Equations, but the flat k = 0 case is readily understood. Write the energy-conservation
equation with an arbitrary rhs, but divide through by R2:

H2 − 8πG

3
ρ =

const

R2
. (21)

Now imagine holding the observables H and ρ constant, but let R → ∞; this has the
effect of making the rhs of the Friedmann equation indistinguishable from zero. Looking
at the metric with k 6= 0, R→ ∞ with Rr fixed implies r → 0, so the difference between
Sk(r) and r becomes negligible and we have in effect the k = 0 case.

There is thus a critical density that will yield a flat universe,

ρc =
3H2

8πG
. (22)

It is common to define a dimensionless density parameter as the ratio of density
to critical density:

Ω ≡ ρ

ρc
=

8πGρ

3H2
. (23)

The current value of such parameters should be distinguished by a zero subscript. In
these terms, the Friedmann equation gives the present value of the scale factor:

R0 =
c

H0
[k/(Ω0 − 1)]1/2, (24)

which diverges as the universe approaches the flat state with Ω = 1. In practice, Ω0

is such a common symbol in cosmological formulae, that it is normal to omit the zero
subscript. We can also define a dimensionless (current) Hubble parameter as

h ≡ H0

100 km s−1Mpc−1
, (25)
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in terms of which the current density of the universe is

ρ0 = 1.878× 10−26 Ωh2 kgm−3

= 2.775× 1011 Ωh2 M⊙ Mpc−3.
(26)

models with general equations of state To solve the Friedmann equa-
tion, we need to specify the matter content of the universe, and there are two obvious
candidates: pressureless nonrelativistic matter, and radiation-dominated matter. These
have densities that scale respectively as a−3 and a−4. The first two relations just say
that the number density of particles is diluted by the expansion, with photons also hav-
ing their energy reduced by the redshift. We can be more general, and wonder if the
universe might contain another form of matter that we have not yet considered. How
this varies with redshift depends on its equation of state. If we define the parameter

w ≡ p/ρc2, (27)

then conservation of energy says

d(ρc2V ) = −p dV ⇒ d(ρc2V ) = −wρc2 dV ⇒ d ln ρ/d ln a = −3(w + 1), (28)

so

ρ ∝ a−3(w+1) (29)

if w is constant. Pressureless nonrelativistic matter has w = 0 and radiation has
w = 1/3.

But this may not be an exhaustive list, and the universe could contain substances
with less familiar equations of state. Inventing new forms of matter may seem like a
silly game to play, but cosmology can be the only way to learn if something unexpected
exists. As we will see in more detail later, modern data force us to accept a contribution
that is approximately independent of time with w ≃ −1: a vacuum energy that
is simply an invariant property of empty space. A general name for this contribution
is dark energy, reflecting our ignorance of its nature (although the name is not
very good, since it is too similar to dark matter: ‘dark tension’ would better reflect its
unusual equation of state with negative pressure).

In terms of observables, this means that the density is written as

8πGρ

3
= H2

0 (Ωva
−3(w+1) +Ωma

−3 +Ωra
−4) (30)

(using the normalized scale factor a = R/R0). We will generally set w = −1 without
comment, except where we want to focus explicitly on this parameter. This expression
allows us to write the Friedmann equation in a manner useful for practical solution.
Start with the Friedmann equation in the form H2 = 8πGρ/3− kc2/R2. Inserting the
expression for ρ(a) gives

H2(a) = H2
0

[

Ωv +Ωma
−3 +Ωra

−4 − (Ω− 1)a−2
]

. (31)
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This equation is in a form that can be integrated immediately to get t(a). This is not
possible analytically in all cases, nor can we always invert to get a(t), but there are
some useful special cases worth knowing. Mostly these refer to the flat universe
with total Ω = 1. Curvature can always be neglected at sufficiently early times, as
can vacuum density (except that the theory of inflation postulates that the vacuum
density was very much higher in the very distant past). The solutions look simplest if
we appreciate that normalization to the current era is arbitrary, so we can choose a = 1
to be at a convenient point where the densities of two main components cross over.
Also, the Hubble parameter at that point (H∗) sets a characteristic time, from which
we can make a dimensionless version τ ≡ tH∗.

matter and radiation Using dashes to denote d/d(t/τ), we have a′
2
= (a−2 +

a−1)/2, which is simply integrated to yield

τ =
2
√
2

3

(

2 + (a− 2)
√
1 + a

)

. (32)

This can be inverted to yield a(τ), but the full expression is too ugly to be much use.
It will suffice to note the limits:

τ ≪ 1 : a = (
√
2τ)1/2.

τ ≫ 1 : a = (3τ/2
√
2)2/3,

(33)

so the universe expands as t1/2 in the radiation era, which becomes t2/3 once matter
dominates. Both these powers are shallower than t, reflecting the decelerating nature
of the expansion.

radiation and vacuum Now we have a′
2
= (a−2 + a2)/2, which is easily solved

in the form (a2)′/
√
2 =

√

1 + (a2)2, and simply inverted:

a =
(

sinh(
√
2τ)
)1/2

. (34)

Here, we move from a ∝ t1/2 at early times to an exponential behaviour characteristic
of vacuum-dominated de Sitter space. This would be an appropriate model for the
onset of a phase of inflation following a big-bang singularity. What about the case of
negative vacuum density? It is easy to repeat the above exercise defining the critical
era as one where ρr equals |ρv|, in which case the solution is the same, except with
sinh → sin. A negative vacuum density always leads to eventual recollapse into a big
crunch. The metric in this case is called anti-de Sitter space.

matter and vacuum Here, a′
2
= (a−1 + a2)/2, which can be tackled via the

substitution y = a3/2, to yield

a =
(

sinh(3τ/2
√
2)
)2/3

. (35)
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This transition from the flat matter-dominated a ∝ t2/3 to de Sitter space seems to be
the one that describes our actual universe (apart from the radiation era at z >∼ 104). It
is therefore worth being explicit about how to translate units to the usual normalization
at a = 1 today. We have to multiply the above expression by a∗, which is the usual
scale factor at matter-vacuum equality, and we have to relate the Hubble parameter H∗

to the usual H0. This is easily done using the Friedmann equation:

a∗ = (Ωm/Ωv)
1/3

H∗ = H0

√

2Ωv.
(36)

curved models We will not be very strongly concerned with highly curved models
in this course, but it is worth knowing some basic facts, as shown in figure 1 (neglecting
radiation). On a plot of the Ωm − Ωv plane, the diagonal line Ωm + Ωv = 1 always
separates open and closed models. If Ωv < 0, recollapse always occurs – whereas a
positive vacuum density does not always guarantee expansion to infinity, especially
when the matter density is high. For closed models with sufficiently high vacuum
density, there was no big bang in the past, and the universe must have emerged from
a ‘bounce’ at some finite minimum radius. All these statements can be deduced quite
simply from the Friedmann equation.

1.3 Observational cosmology

age of the universe Since 1 + z = R0/R(z), we have

dz

dt
= −R0

R2

dR

dt
= −(1 + z)H(z), (37)

so t(z) =
∫∞

z
H(z)−1 dz/(1 + z), where

H2(a) = H2
0

[

Ωv +Ωma
−3 +Ωra

−4 − (Ω− 1)a−2
]

. (38)

This can’t be done analytically in general, but the following simple approximate formula
is accurate to a few % for cases of practical interest:

H(z)t(z) ≃ 2

3
(0.7Ωm(z)− 0.3Ωv(z) + 0.3)−0.3. (39)

At 10 < z < 1000, where matter dominates, this is

t ≃ (2/3)H−1 ≃ (2/3)H−1
0 Ω−1/2

m (1 + z)−3/2. (40)

For a flat universe, the current age is H0t0 ≃ (2/3)Ω−0.3
m . For many years, estimates of

this product were around unity, which is hard to understand without vacuum energy,
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Figure 1. This plot shows the different possibilities for the
cosmological expansion as a function of matter density and vacuum energy.
Models with total Ω > 1 are always spatially closed (open for Ω < 1),
although closed models can still expand to infinity if Ωv 6= 0. If the
cosmological constant is negative, recollapse always occurs; recollapse is
also possible with a positive Ωv if Ωm ≫ Ωv. If Ωv > 1 and Ωm is small,
there is the possibility of a ‘loitering’ solution with some maximum redshift
and infinite age (top left); for even larger values of vacuum energy, there
is no big bang singularity.

unless the density is very low (H0t0 is exactly 1 in the limit of an empty universe). This
was one of the first astronomical motivations for a vacuum-dominated universe.

distance-redshift relation The equation of motion for a photon is Rdr = c dt,
so R0dr/dz = (1 + z)c dt/dz, or

R0r =

∫

c

H(z)
dz. (41)

Remember that non-flat models need the combination R0Sk(r), so one has to divide the
above integral by R0 = (c/H0)|Ω− 1|−1/2, apply the Sk function, and then multiply by
R0 again. Once more, this process is not analytic in general.
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particle horizon If the integral for comoving radius is taken from z = 0 to ∞,
we get the full distance a particle can have travelled since the big bang – the horizon
distance. For flat matter-dominated models,

R0rH ≃ 2c

H0
Ω−0.4

m . (42)

At high redshift, where H increases, this tends to zero. The onset of radiation
domination does not change this: even though the presently visible universe was once
very small, it expanded so quickly that causal contact was not easy. The observed
large-scale near-homogeneity is therefore something of a puzzle.

angular diameters Recall the RW metric:

c2dτ2 = c2dt2 −R2(t)
[

dr2 + S2
k(r) dψ

2
]

. (43)

The spatial parts of the metric give the proper transverse size of an object seen by us
as its comoving size dψ Sk(r) times the scale factor at the time of emission:

dℓ⊥ = dψ R(z)Sk(r) = dψ R0Sk(r)/(1 + z). (44)

If we know r, we can therefore convert the angle subtended by an object into its physical
extent perpendicular to the line of sight.

luminosity and flux density Imagine a source at the centre of a sphere,
on which we sit. The photons from the source pass though a proper surface area
4π[R0Sk(r)]

2. But redshift still affects the flux density in four further ways: (1) photon
energies are redshifted, reducing the flux density by a factor 1 + z; (2) photon arrival
rates are time dilated, reducing the flux density by a further factor 1 + z; (3) opposing
this, the bandwidth dν is reduced by a factor 1+ z, which increases the energy flux per
unit bandwidth by one power of 1 + z; (4) finally, the observed photons at frequency
ν0 were emitted at frequency [1 + z]× ν0. Overall, the flux density is the luminosity at
frequency [1 + z]ν0, divided by the total area, divided by 1 + z:

Sν(ν0) =
Lν([1 + z]ν0)

4πR2
0S

2
k(r)(1 + z)

=
Lν(ν0)

4πR2
0S

2
k(r)(1 + z)1+α

, (45)

where the second expression assumes a power-law spectrum L ∝ ν−α.

surface brightness The flux density is the product of the specific intensity
Iν and the solid angle subtended by the source: Sν = Iν dΩ. Combining the angular
size and flux-density relations gives a relation that is independent of cosmology:

Iν(ν0) =
Bν([1 + z]ν0)

(1 + z)3
, (46)
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where Bν is surface brightness (luminosity emitted into unit solid angle per unit
area of source). This (1 + z)3 dimming makes it hard to detect extended objects at
very high redshift. The factor becomes (1 + z)4 if we integrate over frequency to get a
bolometric quantity.

effective distances The angle and flux relations can be made to look Euclidean:

angular− diameter distance : DA = (1 + z)−1R0Sk(r)

luminosity distance : DL = (1 + z) R0Sk(r).
(47)

Some example distance-redshift relations are shown in figure 2. Notice how a high matter
density tends to make high-redshift objects brighter: stronger deceleration means they
are closer for a given redshift.

Figure 2. A plot of dimensionless angular-diameter distance versus
redshift for various cosmologies. Solid lines show models with zero vacuum
energy; dashed lines show flat models with Ωm + Ωv = 1. In both
cases, results for Ωm = 1, 0.3, 0 are shown; higher density results in lower
distance at high z, due to gravitational focusing of light rays.
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2 The hot big bang

Topics to be covered:

• Thermal history

• Freezeout & relics

• Recombination and last scattering

2.1 Thermal history

Although the timescale for expansion of the early universe is very short, the density is
also very high, so it is normally sensible to assume that conditions are close to thermal
equilibrium. Also the fluids of interest are simple enough that we can treat them as
perfect gases. The thermodynamics of such a gas is derived staring with a box of
volume V = L3, and expanding the fields inside into periodic waves with harmonic
boundary conditions. The density of states in k space is

dN = g
V

(2π)3
d3k (48)

(where g is a degeneracy factor for spin etc.). The equilibrium occupation number
for a quantum state of energy ǫ is given generally by

〈f〉 =
[

e(ǫ−µ)/kT ± 1
]−1

(49)

(+ for fermions, − for bosons). Now, for a thermal radiation background, the chemical
potential, µ is always zero. The reason for this is quite simple: µ appears in the first
law of thermodynamics as the change in energy associated with a change in particle
number, dE = TdS−PdV +µdN . So, as N adjusts to its equilibrium value, we expect
that the system will be stationary with respect to small changes in N . The thermal
equilibrium background number density of particles is

n =
1

V

∫

f dN = g
1

(2πh̄)3

∫ ∞

0

4π p2dp

eǫ(p)/kT ± 1
, (50)

where we have changed to momentum space; ǫ =
√

m2c4 + p2c2 and g is the degeneracy
factor. There are two interesting limits of this expression.

(1) Ultrarelativistic limit. For kT ≫ mc2 the particles behave as if they were mass-
less, and we get

n =

(

kT

c

)3
4πg

(2πh̄)3

∫ ∞

0

y2dy

ey ± 1
. (51)
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(2) Non-relativistic limit. Here we can neglect the ±1 in the occupation number,
in which case the number is suppressed by a dominant exp(−mc2/kT ) factor.
This shows us that the background ‘switches on’ at about kT ∼ mc2; at this
energy, known as a threshold, photons and other species in equilibrium will
have sufficient energy to create particle-antiparticle pairs.

The above thermodynamics also gives the energy density of the background, since
it is only necessary to multiply the integrand by a factor ǫ(p) for the energy in each
mode:

u = ρ c2 = g
1

(2πh̄)3

∫ ∞

0

4π p2 dp

eǫ(p)/kT ± 1
ǫ(p). (52)

In the ultrarelativistic limit, ǫ(p) = pc, this becomes

u =
π2

30(h̄c)3
g (kT )4 (bosons). (53)

The thermodynamic properties of Fermions can be obtained from those of Bosonic black-
body radiation by the following trick: 1/(ex + 1) = 1/(ex − 1) − 2/(e2x − 1). Thus, a
gas of fermions looks like a mixture of bosons at two different temperatures. Knowing
that boson number density and energy density scale as n ∝ T 3 and u ∝ T 4, we find
nF = (3/4)nB; uF = (7/8)uB.

It will also be useful to know the entropy of the background. This is not
too hard to work out, because energy and entropy are extensive quantities for a thermal
background. Thus, writing the first law for µ = 0 and using ∂S/∂V = S/V etc. for
extensive quantities,

dE = TdS − PdV ⇒
(

E

V
dV +

∂E

∂T
dT

)

=

(

T
S

V
dV + T

∂S

∂T
dT

)

− PdV. (54)

Equating the dV and dT parts gives the familiar ∂E/∂T = T ∂S/∂T and

S =
E + PV

T
(55)

These results take an interesting and simple form in the ultrarelativistic limit.
The energy density, u, obeys the usual black-body scaling u ∝ T 4. In the ultrarelativistic
limit, we also know that the pressure is P = u/3, so that the entropy density is

s = (4/3)u/T =
2π2k

45(h̄c)3
g (kT )3 (bosons), (56)

and 7/8 of this for fermions. Now, we saw earlier that the number density of an
ultrarelativistic background also scales as T 3 – therefore we have the simple result
that entropy just counts the number of particles. This justifies a common piece of
terminology, in which the ratio of the number density of photons in the universe to
the number density of baryons (protons plus neutrons) is called the entropy per
baryon. As we will see later, this ratio is about 109. The fact that this ratio is so
large justifies the adiabatic assumption: pretty well all the entropy is in the photons.
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degrees of freedom Overall, the equilibrium relativistic density is

ρc2 =
π2

30(h̄c)3
geff (kT )4; geff ≡

∑

bosons

gi +
7

8

∑

fermions

gj , (57)

expressing the fermion contribution as an effective number of bosons. A similar relation
holds for entropy density: s = [2π2k/45(h̄c)3]heff (kT )3. In equilibrium, heff = geff ,
but this ceases to be true at late times, when the neutrinos and photons have different
temperatures. The geff functions are plotted against photon temperature in figure 3.
They start at a number determined by the total number of distinct elementary particles
that exist (of order 100, according to the standard model of particle physics), and fall
as the temperature drops and more species of particles become nonrelativistic.

Figure 3. The number of relativistic degrees of freedom as a function
of photon temperature. geff measures the energy density; heff the entropy
(dashed line). The two depart significantly at low temperatures, when the
neutrinos are cooler than the photons. For a universe consisting only of
photons, we would expect g = 2. The main features visible are (1) The
electroweak phase transition at 100 Gev; (2) The QCD phase transition
at 200 MeV; (3) the e± annihilation at 0.3 MeV.
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time and temperature This temperature-dependent equilibrium density sets
the timescale for expansion in the early universe. Using the relation between time
and density for a flat radiation–dominated universe, t = (32πGρ/3)−1/2, we can deduce
the time–temperature relation:

t/seconds = g
−1/2
eff

(

T/1010.257 K
)−2

. (58)

This is independent of the present-day temperature of the photon background, which
manifests itself as the cosmic microwave background (CMB),

T = 2.725± 0.002K. (59)

This temperature was of course higher in the past, owing to the adiabatic expansion of
the universe. Frequently, we will assume

T (z) = 2.725(1 + z), (60)

which is justified informally by arguing that photon energies scale as E ∝ 1/a and
saying that the typical energy in black-body radiation is ∼ kT . Being more careful,
we should conserve entropy, so that s ∝ a−3. Since s ∝ T 3 while heff is constant, this
requires T ∝ 1/a. But clearly this does not apply near a threshold. At these points,
heff changes rapidly and the universe will expand at nearly constant temperature for a
period.

The energy density in photons is supplemented by that of the neutrino
background. Because they have a lower temperature, as shown below, they contribute
an energy density 0.68 times that from the photons (if the neutrinos are massless and
therefore relativistic). If there are no other contributions to the energy density from
relativistic particles, then the total effective radiation density is Ωrh

2 ≃ 4.2× 10−5 and
the redshift of matter–radiation equality is

1 + zeq = 24 074Ωh2 (T/2.725K)−4. (61)

The time of this change in the global equation of state is one of the key epochs in
determining the appearance of the present-day universe.

The following table shows some of the key events in the history of the universe.
Note that, for very high temperatures, energy units for kT are often quoted instead of
T . The conversion is kT = 1 eV for T = 104.06 K. Some of the numbers are rounded,
rather than exact; also, some of them depend a little on Ω and H0. Where necessary, a
flat model with Ω = 0.3 and h = 0.7 has been assumed.

Event T kT geff redshift time

Now 2.73 K 0.0002 eV 3.3 0 13 Gyr
Distant galaxy 16 K 0.001 eV 3.3 5 1 Gyr
Recombination 3000 K 0.3 eV 3.3 1100 105.6 years
Radiation domination 9500 K 0.8 eV 3.3 3500 104.7 years
Electron pair threshold 109.7 K 0.5 MeV 11 109.5 3 s
Nucleosynthesis 1010 K 1 MeV 11 1010 1 s
Nucleon pair threshold 1013 K 1 GeV 70 1013 10−6.6 s
Electroweak unification 1015.5 K 250 GeV 100 1015 10−12 s
Grand unification 1028 K 1015 GeV 100(?) 1028 10−36 s
Quantum gravity 1032 K 1019 GeV 100(?) 1032 10−43 s
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2.2 Freezeout and relics

So far, we have assumed that thermal equilibrium will be followed in the early universe,
but this is far from obvious. Equilibrium is produced by reactions that involve individual
particles, e.g. e+e− ↔ 2γ converts between electron-positron pairs and photons. When
the temperature is low, typical photon energies are too low for this reaction to proceed
from right to left, so there is nothing to balance annihilations.

Nevertheless, the annihilations only proceed at a finite rate: each member of the
pair has to find a partner to interact with. We can express this by writing a simple
differential equation for the electron density, called the Boltzmann equation:

ṅ+ 3Hn = −〈σv〉n2 + S, (62)

where σ is the reaction cross-section, v is the particle velocity, and S is a source term
that represents thermal particle production. The 3Hn term just represents dilution by
the expansion of the universe. Leaving aside the source term for the moment, we see
that the change in n involves two timescales:

expansion timescale = H(z)−1

interaction timescale = (〈σv〉n)−1
(63)

Both these times increase as the universe expands, but the interaction time usually
changes fastest. Two-body reaction rates scale proportional to density, times a cross-
section that is often a declining function of energy, so that the interaction time changes
at least as fast as R3. In contrast, the Hubble time changes no faster than R2 (in the
radiation era), so that there is inevitably a crossover.

The situation therefore changes from one of thermal equilibrium at early times
to a state of freezeout or decoupling at late times. Once the interaction timescale
becomes much longer than the age of the universe, the particle has effectively ceased to
interact. It thus preserves a ‘snapshot’ of the properties of the universe at the time the
particle was last in thermal equilibrium. This phenomenon of freezeout is essential to
the understanding of the present-day nature of the universe. It allows for a whole set of
relics to exist from different stages of the hot big bang. The photons of the microwave
background are one such relic, generated at redshift z ≃ 1100. A more exotic example
is the case of neutrinos.

To complete the Boltzmann equation, we need the source term S. This term can
be fixed by a thermodynamic equilibrium argument: for a non-expanding universe, n
will be constant at the equilibrium value for that temperature, nT , showing that

S = 〈σv〉n2
T
. (64)

If we define comoving number densities N ≡ a3n (effectively the ratio of n to the
relativistic density for that temperature, nrel), the rate equation can be rewritten in the
simple form

d lnN

d ln a
= − Γ

H

[

1−
(

NT

N

)2
]

, (65)
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where Γ = n〈σv〉 is the interaction rate experienced by the particles.

Unfortunately, this equation must be solved numerically. The main features are
easy enough to see, however. Suppose first that the universe is sustaining a population in
approximate thermal equilibrium, N ≃ NT . If the population under study is relativistic,
NT does not change with time, because nT ∝ T 3 and T ∝ a−1. This means that it is
possible to keep N = NT exactly, whatever Γ/H. It would however be grossly incorrect
to conclude from this that the population stays in thermal equilibrium: if Γ/H ≪ 1, a
typical particle suffers no interactions even while the universe doubles in size, halving
the temperature. A good example is the microwave background, whose photons last
interacted with matter at z ≃ 1100.

The CMB nevertheless still appears to be equilibrium black-body radiation
because the number density of photons has fallen by the right amount to compensate
for the redshifting of photon energy. This sounds like an incredible coincidence, but is in
fact quite inevitable when looked at from the quantum-mechanical point of view. This
says that the occupation number of a given mode, = (exp h̄ω/kT − 1)−1 for thermal
radiation, is an adiabatic invariant that does not change as the universe expands – only
the frequency alters, and thus the apparent temperature.

Now consider the opposite case, where the thermal solution would be
nonrelativistic, with NT ∝ T−3/2 exp(−mc2/kT ). If the background stays at the
equilibrium value, the lhs of the rate equation will therefore be negative and ≫ 1
in magnitude. This is consistent if Γ/H ≫ 1, because then the (NT/N)2 term
on the rhs can still be close to unity. However, if Γ/H ≪ 1, there must be a
deviation from equilibrium. When NT changes sufficiently fast with a, the actual
abundance cannot keep up, so that the (NT/N)2 term on the rhs becomes negligible
and d lnN/d ln a ≃ −Γ/H, which is ≪ 1. There is therefore a critical time at which
the reaction rate drops low enough that particles are simply conserved as the universe
expands – the population has frozen out. This provides a more detailed justification
for the intuitive rule-of-thumb used above to define decoupling,

N(a→ ∞) = NT (Γ/H = 1). (66)

Exact numerical solutions of the rate equation almost always turn out very close to this
simple rule, as shown in figure 4.

the relic density The above freezeout criterion can be used to deduce a simple
and very important expression for the present-day density of a non-relativistic relic:

Ωrelich
2 ≃ 0.03 (σ/pb)−1, (67)

where the ‘picobarn’ is 1 pb = 10−40 m2. Thus only a small range of annihilation cross-
sections will be of observational interest. The steps needed to get this formula are as
follows. (1) From Γ/H = 1, the number density of relics at freezeout is nf = Hf/〈σv〉;
(2) H = (8πGρ/3)1/2, where ρc2 = (π2/30h̄3c3)geff(kT )

4; (3) Ωrelic = 8πGmn0/3H
2
0 .

The only missing ingredient here is how to relate the present number density n0 to the
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Figure 4. Solution of the Boltzmann equation for freezeout of a single
massive fermion. We set Γ/H = ǫ(kT/mc2)N/Nrel, as appropriate for a
radiation-dominated universe in which 〈σv〉 is assumed to be independent
of temperature. The solid lines show the case ǫ = 1 and increasing by
powers of 2. A high value of ǫ leads to freezeout at increasingly low
abundances. The dashed lines show the abundance predicted by the simple
recipe of the thermal density for which Γ/H = 1.

density nf at temperature Tf . Since the relics are conserved, the number density must
have fallen by the same factor as the entropy density:

nf/n0 = (hfeffT
3
f )/(h

0
effT

3
0 ). (68)

Today, h0eff = 43/11, and hfeff = geff at high redshift. This allows us to deduce the relic
density, given the mass, cross-section and temperature of freezeout:

Ωrelich
2 ≃ 10−33.0 m2

〈σv〉

(

mc2

kTf

)

g
−1/2
eff . (69)

We see from figure 4 thatmc2/kTf ∼ 10 with only a logarithmic dependence on reaction
rate, which roughly cancels the last factor on the rhs. Finally, since particles are nearly
relativistic at freezeout, we set 〈σv〉 = σc to get our final estimate of the typical cross-
section for an interesting relic abundance. The eventual conclusion makes sense: the
higher the cross-section, the longer the particle can stay in equilibrium, and the more
effective annihilations can be in suppressing the number density. Note that, in detail,
we need to worry about whether the particle is a Majorana particle (i.e. its own
antiparticle) or a Dirac particle where particles and antiparticles are distinct.
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neutrino decoupling The best case for application of this freezeout apparatus
is to relic neutrinos. At the later stages of the big bang, energies are such that only
light particles survive in equilibrium: photons (γ), neutrinos (ν) and e+e− pairs. As the
temperature falls below Te = 109.7 K), the pairs will annihilate. Electrons can interact
via either the electromagnetic or the weak interaction, so in principle the annihilations
might yield pairs of photons or neutrinos. However, in practice the weak reactions freeze
out earlier, at T ≃ 1010 K.

The effect of the electron-positron annihilation is therefore to enhance the
numbers of photons relative to neutrinos. Strictly, what is conserved in this process
is the entropy . The entropy of an e± + γ gas is easily found by remembering that it
is proportional to the number density, and that all three particle species have g = 2
(polarization or spin). The total is then

s(γ + e+ + e−) =
11

4
s(γ). (70)

Equating this to photon entropy at a new temperature gives the factor by which the
photon temperature is enhanced with respect to that of the neutrinos. Thus we infer
the existence of a neutrino background with a temperature

Tν =

(

4

11

)1/3

Tγ = 1.945K, (71)

for Tγ = 2.725 K. These relativistic relic neutrinos contribute an energy density that is
a factor (7/8)× (4/11)4/3 times that of the photons. For three neutrino species, this
enhances the energy density in relativistic particles by a factor 1.68 (there are three
different kinds of neutrinos, just as there are three leptons: the µ and τ particles are
heavy analogues of the electron).

massive neutrinos Theoretical progress in understanding the origin of masses
in particle physics means that there is no reason for the neutrino to be completely
devoid of mass. Also, there is now clear experimental evidence that neutrinos have a
small non-zero mass. The consequences of this for cosmology could be quite profound,
as relic neutrinos are expected to be very abundant. The above section showed that
n(ν + ν) = (3/4)n(γ; T = 1.945K). That yields a total of 113 relic neutrinos in every
cm3 for each species. Suppose these neutrinos were ultrarelativistic at decoupling: as
the universe expands to kT < mνc

2, the total number of neutrinos is preserved, so the
present-day mass density in neutrinos is just the zero-mass number density times mν ,
and the consequence for the cosmological density in light neutrinos is easily worked out
to be

Ωνh
2 =

∑

mi

94.1 eV
. (72)

The more complicated case of neutrinos that decouple when they are already
nonrelativistic is studied below.
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Figure 5. The masses of the individual neutrino mass eigenstates,
plotted against the total neutrino mass for a normal hierarchy (solid lines)
and an inverted hierarchy (dashed lines). Current cosmological data set
an upper limit on the total mass of light neutrinos of around 0.5 eV.

The current direct laboratory limits to the neutrino masses are

νe <∼ 2.2 eV νµ <∼ 0.17MeV ντ <∼ 15MeV. (73)

Based on this, even the electron neutrino could be of great cosmological significance.
But in practice, we will see later that studies of cosmological large-scale structure limit
the sum of the masses to a maximum of about 0.5 eV. This is becoming interesting, since
it is known that neutrino masses must be non-zero. In brief, this comes from studies
of neutrino mixing, in which each neutrino type is a mixture of energy eigenstates.
The energy differences can be measured, which yields a measure of the difference in the
square of the masses (consider the relativistic relation E2 = m2+p2, and expand to get
E ≃ p + m2/2p; neutrinos have well-defined momentum, but imprecise energy owing
to mixing). These mixings are known from wonderfully precise experiments detecting
neutrinos generated in the sun and the Earth’s atmosphere:

∆(m21)
2 = 8.0× 10−5 eV2

∆(m32)
2 = 2.5× 10−3 eV2,

(74)

where m1, m2 and m3 are the three mass eigenstates. This information does not give
the absolute mass scale, nor does it tell us whether there is a normal hierarchy
with m3 ≫ m2 ≫ m1, or an inverted hierarchy in which states 1 & 2 are a close
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doublet lying well above state 3. Cosmology can settle both these issues by measuring
the total density in neutrinos. The absolute minimum situation is a normal hierarchy
with m1 negligibly small, in which case the mass is dominated by m3, which is around
0.05 eV. The cosmological limits are within a power of 10 of this interesting point.

relic particles as dark matter Many other particles exist in the early
universe, so there are a number of possible relics in addition to the massive neutrino. A
common collective term for these particles is WIMP – standing for weakly interacting
massive particle. There are really three generic types to consider, as follows.

Figure 6. The contribution to the density parameter produced by
relic neutrinos (or neutrino-like particles) as a function of their rest mass.
The shaded band shows a factor of 2 either side of the observed CDM
density. At low masses, the neutrinos are highly relativistic when they
decouple: their abundance takes the zero-mass value, and the density is
just proportional to the mass. Above about 1 MeV, the neutrinos are non-
relativistic at decoupling, and their relic density is reduced by annihilation.
Above the mass of the Z boson, the cross-section falls, so that annihilation
is less effective and the relic density rises again.
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(1) Hot Dark Matter (HDM) These are particles that decouple when
relativistic, and which have a number density roughly equal to that of photons;
eV-mass neutrinos are the archetype. The relic density scales linearly with the
particle mass.

(2) Warm Dark Matter (WDM) If the particle decouples sufficiently early,
the relative abundance of photons can then be boosted by annihilations other
than just e±. In modern particle physics theories, there are of order 100 distinct
particle species, so the critical particle mass to make Ω = 1 can be boosted to
around 1 – 10 keV.

(3) Cold Dark Matter (CDM) If the relic particles decouple while they are
nonrelativistic, the number density can be exponentially suppressed. If the
interactions are like those of neutrinos, then the freezeout temperature is about
1 MeV, and the relic mass density then falls with increasing mass (see figure 6).
For weak interactions, cross-sections scale as (energy)2, so that the relic density
falls as 1/m2. Interesting masses then lie in the ≃ 10 GeV range, this cannot
correspond to the known neutrinos, since such particles would have been seen in
accelerators. But beyond about 90 GeV (the mass of the Z boson), the strength
of the weak interaction is reduced, with cross-section going as (energy)−2. The
relic density now rises as m2, so that the observed dark matter density is
attained at m ≃ 1 TeV. Plausible candidates of this sort are found among so-
called supersymmetric theories, which predict many new weakly-interacting
particles. The favoured particle for a CDM relic is called the neutralino.

Since these particles exist to explain galaxy rotation curves, they must be passing
through us right now. There is therefore a huge effort in the direct laboratory detection
of dark matter, mainly via cryogenic detectors that look for the recoil of a single nucleon
when hit by a DM particle (in deep mines, to shield from cosmic rays). Well-constructed
experiments with low backgrounds are starting to set interesting limits, as shown in
figure 7. There is no unique target to aim for, since even the simplest examples of
supersymmetric models contain a variety of free parameters. These allow models that
are optimistically close to current limits, but also some that will be hard to verify. The
public-domain package DarkSUSY is available at www.physto.se/~edsjo/darksusy
to make these detailed abundance calculations.

This subject saw a lot of publicity at the end of 2009, when the CDMS
experiment announced events that were consistent with relic WIMPs (see
http://arxiv.org/abs/0912.3592). In brief, cryogenic Ge and Si detectors are
examined for evidence of nuclear recoil, which manifests itself in two distinct ways:
heat (phonons) and ionization (electrons). The double signature allows rejection of
many non-WIMP background events, although high-energy neutrons from cosmic ray
events or radioactivity are a fundamental limit. CDMS estimate that these processes
should cause on average 0.8 WIMP-like events during their 2 years of data; 2 events were
actually seen. This is thus not so far inconsistent with background, but it is equally
possible that there is a signal at a level of up to about 5 times the background. If
they run for more years, or increase the detector size, to the point of expecting around
10 background events, these possibilities will be distinguishable; we will will then have
either a detection, or will be able to reduce the current upper limits.
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What is particularly exciting is that the properties of these relic particles can
also be observed via new examples manufactured in particle accelerators. The most
wonderful outcome would be for the same particle to be found in these two different
ways. The chances of success in this enterprise are hard to estimate, and some models
exist in which detection would be impossible for many decades. But it would be a
tremendous scientific achievement if dark matter particles were to be detected in this
way, and a good part of the plausible parameter space will be covered over the next
decade.
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Figure 7. A plot of the dark-matter experimentalists’ space: cross-
section for scattering off nucleons (in wonderfully baroque units: the
‘picobarn’ is 10−40 m2) against WIMP mass. The shaded areas and
points indicate various supersymmetric models that match particle-
physics constraints and have the correct relic density. The upper curve
indicates current direct (non)detection limits, and dashed curves are where
we might be in about a decade. Vertical lines are current collider limits,
and predictions for the LHC and a future linear collider.
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baryogenesis It should be emphasised that these freezeout calculations predict
equal numbers of particles and antiparticles. This makes a critical contrast with the
case of normal or baryonic material. The number density of baryons is low (roughly
10−9 that of the CMB photons), so one’s first thought might be that baryons are
another frozen-out relic. But as far as is known, there is a negligible cosmic density of
antibaryons; even if antimatter existed, freezeout applied to protons-antiproton pairs
predicts a density far below what is observed. The inevitable conclusion is that the
universe began with a very slight asymmetry between matter and antimatter: at high
temperatures there were 1+O(10−9) protons for every antiproton. If baryon number is
conserved, this imbalance cannot be altered once it is set in the initial conditions; but
what generates it? This is clearly one of the big challenges in cosmology, but our ideas
are less well formed here than in many other areas.

2.3 Recombination

Moving closer to the present, and passing through matter-radiation equality at z ∼ 104,
the next critical epoch in the evolution of the universe is reached when the temperature
drops to the point (T ∼ 1000 K) where it is thermodynamically favourable for the
ionized plasma to form neutral atoms. This process is known as recombination: a
complete misnomer, as the plasma has always been completely ionized up to this time.

the rate equation A natural first thought is that the ionization of the plasma
may be treated by a thermal-equilibrium approach, using the Saha equation, which
applies in stellar atmospheres. In fact, such an approach is almost always invalid.
This is not because electromagnetic interactions are too slow to maintain equilibrium:
rather, thay are too fast. Consider a single recombination; if this were to occur directly
to the ground state, a photon with h̄ω > χ would be produced. Such photons are almost
immediately destroyed by ionizing another neutral atom. Similarly, reaching the ground
state requires the production of photons at least as energetic as the 2P → 1S spacing
(Lyman α, with λ = 1216Å), and these also are re-absorbed very efficiently. This is
a common phenomenon in astrophysics: the Lyman α photons undergo resonant
scattering and are very hard to get rid of (unlike a finite HII region, where the Lyα
photons can escape).

There is a way out, however, using two-photon emission. The 2S → 1S
transition is strictly forbidden at first order and one can only conserve energy and
angular momentum in the transition by emitting a pair of photons. Because of this
slow bottleneck, the ionization at low redshift is well above the equilibrium level.

A highly stripped-down analysis of events simplifies the hydrogen atom to just
two levels (1S and 2S). Any chain of recombinations that reaches the ground state
can be ignored through the above argument: these reactions produce photons that are
immediately re-absorbed elsewhere, so they have no effect on the ionization balance.
The main chance of reaching the ground state comes through the recombinations that
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reach the 2S state, since some fraction of the atoms that reach that state will suffer two-
photon decay before being re-excited. The rate equation for the fractional ionization is
thus

d(nx)

dt
= −R (nx)2

Λ2γ

Λ2γ + ΛU(T )
, (75)

where n is the number density of protons, x is the fractional ionization, R is the
recombination coefficient (R ≃ 3×10−17T−1/2 m3s−1), Λ2γ is the two-photon decay rate,
and ΛU(T ) is the stimulated transition rate upwards from the 2S state. This equation
just says that recombinations are a two-body process, which create excited states that
cascade down to the 2S level, from whence a competition between the upward and
downward transition rates determines the fraction that make the downward transition.
A fuller discussion (see chapter 6 of Peebles 1993 or section 3.6 of Mukhanov 2005)
would include a number of other processes: depopulation of the ground state by inverse
2-photon absorption; redshifting of Ly alpha photons due to the universal expansion,
which can prevent them being re-absorbed. At the redshifts of practical interest (1000
to 10), the simplified equation captures the main effect, although detailed calculations
have to include the recombination of He as well as H.

An important point about the rate equation is that it is only necessary to solve it
once, and the results can then be scaled immediately to some other cosmological model.
Consider the rhs: both R and ΛU(T ) are functions of temperature, and thus of redshift
only, so that any parameter dependence is carried just by n2, which scales ∝ (Ωbh

2)2,
where Ωb is the baryonic density parameter. Similarly, the lhs depends on Ωbh

2 through
n; the other parameter dependence comes if we convert time derivatives to derivatives
with respect to redshift:

dt

dz
≃ −3.09× 1017(Ωmh

2)−1/2 z−5/2 s, (76)

for a matter-dominated model at large redshift. Putting these together, the fractional
ionization must scale as

x(z) ∝ (Ωmh
2)1/2

Ωbh2
. (77)

This is a very different scaling from the prediction of the Saha equation.

last scattering Recombination is important observationally because it marks
the first time that photons can travel freely. When the ionization is high, Thomson
scattering causes them to proceed in a random walk, so the early universe is opaque.
The interesting thing from our point of view is to work out the maximum redshift from
which we can receive a photon without it suffering scattering. To do this, we work out
the optical depth to Thomson scattering,

τ =

∫

ntote xσTdℓproper; dℓproper = R(z) dr = R0 dr/(1 + z). (78)
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Figure 8. The ‘visibility function’ governing where photons in the
CMB undergo their final scattering. This is very nearly independent of
cosmological parameters, as illustrated by the effect of a 50% increase in
Ωb (dotted line), Ωm (dot-dashed line) and h (dashed line), relative to the
standard model (solid line).

For a fully ionized plasma with 25% He by mass, the total electron number density is

ntote (z) = 9.83Ωbh
2 (1 + z)3 m−3. (79)

Also, dℓproper = c dt, which brings in a factor of (Ωmh
2)−1/2. These two density terms

automatically cancel the principal dependence of x(z), so we predict that the optical
depth should be very largely a function of redshift only. For standard parameters, a
good approximation around τ = 1 is

τ(z) ≃
(

1 + z

1080

)13

(80)

(cf. Jones & Wyse 1985; A&A 149, 144).

This approximation is not perfect, however, and very accurate work needs
detailed numerical solution of the evolution equations, including the omitted processes.
See Seager, Sasselov & Scott (2000; ApJS, 128, 407). Because τ changes rapidly with
redshift, the visibility function for the redshift at which photons were last scattered,
e−τdτ/dz, is sharply peaked, and is well fitted by a Gaussian of mean redshift 1070 and
standard deviation in redshift 80. As illustrated in figure 8, these properties are in
practice insensitive to the cosmological parameters. Thus, when we look at the sky,
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we can expect to see in all directions photons that originate from a last-scattering
surface at z ≃ 1100. It is worth noting that this redshift is very much lower than we
would expect just from setting

k × 2.725 K× (1 + z) = χ, (81)

which gives z ≃ 104.8. The difference is partly because the ionization falls slower than
Saha, but also because even a tiny ionization easily causes scattering. The fact that
the properties of the last-scattering surface are almost independent of all the unknowns
in cosmology is immensely satisfying, and gives us at least one relatively solid piece of
ground to act as a base in exploring the trackless swamp of cosmology.
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3 Inflation – I

Topics to be covered:

• Initial condition problems

• Dynamics of scalar fields

• Noether’s theorem

3.1 Initial condition problems

The expanding universe of the big-bang model is surprising in many ways: (1) What
caused the expansion? (2) Why is the expansion so close to flat – i.e. Ω ∼ 1 today?
(3) Why is the universe close to isotropic (the same in all directions)? (4) Why does
it contain structure? Some of these problems may seem larger than others, but when
examined in detail all point to something missing in our description of the early stages of
cosmological history. It is normally assumed that the solution to this will be some piece
of additional physics that is important at high energies. Before discussing possibilities,
there are a few important general ideas that will be needed.

quantum gravity limit In principle, T → ∞ as R → 0, but there comes a
point at which this extrapolation of classical physics breaks down. This is where the
thermal energy of typical particles is such that their de Broglie wavelength is smaller
than their Schwarzschild radius: quantum black holes clearly cause difficulties with
the usual concept of background spacetime. Equating 2πh̄/(mc) to 2Gm/c2 yields a
characteristic mass for quantum gravity known as the Planck mass. This mass, and
the corresponding length h̄/(mPc) and time ℓP/c form the system of Planck units:

mP ≡
√

h̄c

G
≃ 1019GeV

ℓP ≡
√

h̄G

c3
≃ 10−35m

tP ≡
√

h̄G

c5
≃ 10−43s.

(82)

The Planck time therefore sets the origin of time for the classical phase of the big bang.
It is incorrect to extend the classical solution to R = 0 and conclude that the universe
began in a singularity of infinite density. A common question about the big bang is
‘what happened at t < 0?’, but in fact it is not even possible to get to zero time without
adding new physical laws.

natural units To simplify the appearance of equations, it is common practice in
high-energy physics to adopt natural units, where we take

k = h̄ = c = µ0 = ǫ0 = 1. (83)
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This convention makes the meaning of equations clearer by reducing the algebraic
clutter, and is also useful in the construction of intuitive arguments for the order of
magnitude of quantities of interest. Hereafter, natural units will frequently be adopted,
although it will occasionally be convenient to re-insert explicit powers of h̄ etc.

The adoption of natural units corresponds to fixing the units of charge, mass,
length and time relative to each other. This leaves one free unit, usually taken to be
energy. Natural units are thus one step short of the Planck system, in which G = 1
also, so that all units are fixed and all physical quantities are dimensionless. In natural
units, the following dimensional equalities hold:

[E] = [T ] = [m]

[L] = [m]−1
(84)

Hence, the dimensions of energy density are

[u] = [m]4, (85)

with units often quoted in GeV4. It is however often of interest to express things in
Planck units: energy as a multiple of mP, energy density as a multiple of m4

P
etc. The

gravitational constant itself is then

G = m−2
P
. (86)

flatness problem Now to quantify the first of the many puzzles concerning initial
conditions. From the Friedmann equation, we can write the density parameter as a
function of era:

Ω(a) =
8πGρ(a)

H2(a)
=

Ωv +Ωma
−3 +Ωra

−4

Ωv +Ωma−3 +Ωra−4 − (Ω− 1)a−2
(87)

(and corresponding expressions for the Ω(a) corresponding to any one component just
by picking the appropriate term on the top line). This tells us that, if the total Ω is
unity today, it was always unity (a geometrical statement: if k = 0, it can’t make a
continuous transition to k = ±1). But if Ω 6= 1, how does Ω(a) evolve? It should
be clear that Ω(a) → 1 at very large and very small a, provided Ωv is nonzero in the
former case, and provided Ωm or Ωr is nonzero in the latter case (without vacuum
energy, Ω = 1 is unstable). In short, the Ω = 1 state is an attractor, looking in either
direction in time. It has long been clear that this presents a puzzle with regard to the
initial conditions. These will be radiation dominated, so we have

Ω(ainit) ≃ 1 +
(Ω− 1)

Ωr
a2init. (88)

If we are willing to consider a Planck-scale origin with ainit ∼ 10−32, then clearly
conditions at that time must be flat to perhaps 60 powers of 10. A more democratic
initial condition might be thought to have Ω(ainit)−1 of order unity, so some mechanism
to make it very small (or zero) is clearly required. This ‘how could the universe have
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known?’ argument is a general basis for a prejudice that Ω = 1 holds exactly today.
it would seem contrived for the expansion to have proceeded for so many powers of 10
with Ω ≃ 1, only to depart just as we observe it.

horizon problem We have already mentioned the puzzle that it has apparently
been impossible to establish causal contact throughout the present observable universe.
Consider the integral for the horizon length:

rH =

∫

c dt

R(t)
. (89)

The standard radiation-dominated R ∝ t1/2 law makes this integral converge near t = 0.
To solve the horizon problem and allow causal contact over the whole of the region
observed at last scattering requires a universe that expands ‘faster than light’ near t = 0:
R ∝ tα, with α > 1. It is tempting to assert that the observed homogeneity proves that
such causal contact must once have occurred, but this means that the equation of state
at early times must have been different. Indeed, if we look at Friedmann’s equation in
its second form,

R̈ = −4πGR(ρ+ 3p/c2)/3, (90)

and realize that R ∝ tα, with α > 1 implies an accelerating expansion, we see that what
is needed is negative pressure:

ρc2 + 3p < 0. (91)

de sitter space The familiar example of negative pressure is vacuum energy, and
this is therefore a hint that the universe may have been vacuum-dominated at early
times. The Friedmann equation in the k = 0 vacuum-dominated case has the de
Sitter solution:

R ∝ expHt, (92)

where H =
√

8πGρvac/3. This is the basic idea of the inflationary universe:
vacuum repulsion can cause the universe to expand at an ever-increasing rate. This
launches the Hubble expansion, and solves the horizon problem by stretching a small
causally-connected patch to a size large enough to cover the whole presently-observable
universe.

This is illustrated by in figure 9, where we assume that the universe can be made
to change its equation of state abruptly from vacuum dominated to radiation dominated
at some time tc. Before tc, we have R ∝ expHt; after tc, R ∝ t1/2. We have to match
R and Ṙ at the join; (otherwise the acceleration form of Friedmann’s equation would
be singular); it is then easy to show that tc = 1/2H. When we observe the universe at
t > tc, we predict that there was a singularity at t = 0, but the real universe existed
far earlier than this. In principle, the question ‘what happened before the big bang?’ is
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Figure 9. Illustrating the true history of the scale factor in the
simplest possible inflationary model. Here, the universe stays in an
exponential de Sitter phase for an indefinite time until its equation of
state abruptly changes from vacuum dominated to radiation dominated
at time tc. This must occur in such a way as to match R and Ṙ, leading to
the solid curve, where the plotted point indicates the join. For 0 < t < tc,
the dashed curve indicates the time dependence we would infer if vacuum
energy was ignored. This reaches R = 0 at t = 0: the classical ‘big
bang’. The inflationary solution clearly removes this feature, placing any
singularity at large negative time. The universe is much older than we
would expect from observations at t > tc, which is one way of seeing how
the horizon problem can be evaded.

now answered: there was no big bang. There might have still been a singularity at large
negative time, but one could imagine the de Sitter phase being of indefinite duration. In
a sense, then, an inflationary start to the expansion would in reality be a very slow one
– as compared to the common popular description of ‘an extraordinarily rapid phase of
expansion’.

This idea of a non-singular origin to the universe was first proposed by the Soviet
cosmologist E.B. Gliner, in 1969. He suggested no mechanism by which the vacuum
energy could change its level, however. Before trying to plug this critical gap, we can
note that an early phase of vacuum-dominated expansion can also solve the flatness
problem. Consider the Friedmann equation,

Ṙ2 =
8πGρR2

3
− kc2. (93)
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In a vacuum-dominated phase, ρR2 increases as the universe expands. This term can
therefore always be made to dominate over the curvature term, making a universe that
is close to being flat (the curvature scale has increased exponentially). In more detail,
the Friedmann equation in the vacuum-dominated case has three solutions:

R ∝







sinhHt (k = −1)
coshHt (k = +1)
expHt (k = 0),

(94)

where H =
√

8πGρvac/3. Note that H is not the Hubble parameter at an arbitrary
time (unless k = 0), but it becomes so exponentially fast as the hyperbolic trigonometric
functions tend to the exponential. If we assume that the initial conditions are not fine
tuned (i.e. Ω = O(1) initially), then maintaining the expansion for a factor f produces

Ω = 1 +O(f−2). (95)

This can solve the flatness problem, provided f is large enough. To obtain Ω of order
unity today requires |Ω− 1| <∼ 10−52 at the GUT epoch, and so

ln f >∼ 60 (96)

e-foldings of expansion are needed; it will be proved below that this is also exactly
the number needed to solve the horizon problem. It then seems almost inevitable that
the process should go to completion and yield Ω = 1 to measurable accuracy today.
This is one of the most robust predictions of inflation (although, as we have seen, the
expectation of flatness is fairly general).

how much inflation do we need? To be quantitative, we have to decide when
inflation is to happen. The earliest possible time is at the Planck era, t ≃ 10−43 s, at
which point the causal scale was ct ≃ 10−35 m. What comoving scale is this? The
redshift is roughly (ignoring changes in geff) the Planck energy (1019 GeV) divided by
the CMB energy (kT ≃ 10−3.6 eV), or

zP ≃ 1031.6. (97)

This expands the Planck length to 0.4 mm today. This is far short of the present horizon
(∼ 6000h−1 Mpc), by a factor of nearly 1030, or e69. It is more common to assume that
inflation happened at a safer distance from quantum gravity, at about the GUT energy
of 1015 GeV. The GUT-scale horizon needs to be stretched by ‘only’ a factor e60 in
order to be compatible with observed homogeneity. This tells us a minimum duration
for the inflationary era:

∆tinflation > 60H−1
inflation. (98)

The GUT energy corresponds to a time of about 10−35 s in the conventional radiation-
dominated model, and we have seen that this switchover time should be of order
H−1

inflation. Therefore, the whole inflationary episode need last no longer than about
10−33 s.
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3.2 Dynamics of scalar fields

Since 1981, these ideas have been set on a more specific foundation using models for a
variable vacuum energy that come from particle physics. There are many variants, but
the simplest concentrate on scalar fields. These are fields like the electromagnetic
field, but differing in a number of respects. First, the field has only one degree of
freedom: just a number that varies with position, not a vector like the EM field. The
wave equation obeyed by such a field in flat space is the Klein–Gordon equation:

1

c2
φ̈−∇2φ+ (m2c2/h̄2)φ = 0, (99)

which is just the standard wave equation if m = 0. This is easy to derive just by
substituting the de Broglie relations p = −ih̄∇∇∇∇∇∇∇∇∇∇∇∇∇ and E = ih̄∂/∂t into E2 = p2c2+m2c4.
To apply this to cosmology, we neglect the spatial derivatives, since we imagine some
initial domain in which we have a homogeneous scalar field. This synchronizes
the subsequent dynamics of φ(t) throughout the observable universe (i.e. the patch that
we inflate). The differential equation is now

φ̈ = − d

dφ
V (φ); V (φ) = (m2c4/h̄2)φ2/2. (100)

This is just a harmonic oscillator equation, and we can see that the field will oscillate
in the potential, with ‘kinetic energy’ T = φ̇2/2. In classical dynamics of a ball in
a potential, this motion will conserve energy: φ̇2/2 + V (φ) = constant. The energy
transforms itself from all potential at the top of the motion, to all kinetic at the bottom.
This behaviour is rather different to the familiar oscillations of the electromagnetic field:
if the field is homogeneous, it does not oscillate. This is because the familiar energy
density in electromagnetism (ǫ0E

2/2+B2/2µ0) is entirely kinetic energy in this analogy
(to see this, write the fields in terms of the potentials: B =∇∇∇∇∇∇∇∇∇∇∇∇∇∧A and E = −∇∇∇∇∇∇∇∇∇∇∇∇∇φ− Ȧ.
We don’t see coherent oscillations in electromagnetism because the photon has no mass.

We will show below that, not only does V (φ) play the role of a potential energy
in the equation of motion, it acts as a physical energy density in space. This potential
energy density is equivalent to a vacuum density: its gravitational properties are
repulsive and can cause an inflationary phase of exponential expansion. In this simple
model, the universe is started in a potential-dominated state, and inflates until the field
falls enough that the kinetic energy becomes important. In practical models, this stage
will be associated with reheating: although weakly interacting, the field does couple
to other particles, and its oscillations can generate other particles – thus transforming
the scalar-field energy into energy of a normal radiation-dominated universe.

lagrangians and fields To understand what scalar fields can do for cosmology,
it is necessary to use some elements of the more powerful Lagrangian description of
the dynamics. We will try to keep this fairly informal. Consider first a classical
system of particles: the Lagrangian L is defined as the difference of the kinetic
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and potential energies, L = T − V , for some set of particles with coordinates qi(t).
Euler’s equation gives an equation of motion for each particle

d

dt

(

∂L

∂q̇i

)

=
∂L

∂qi
. (101)

As a sanity check, consider a single particle in a potential in 1D: L = mẋ2/2 − V (x).
∂L/∂ẋ = mẋ, so we get mẍ = −∂V/∂x, as desired. The advantage of the Lagrangian
formalism, of course, is that it is not necessary to use Cartesian coordinates. In passing,
we note that the formalism also supplies a general definition of momentum:

pi ≡
∂L

∂q̇i
, (102)

which again is clearly sensible for Cartesian coordinates.

Let’s briefly revise the derivation. We say that one coordinate (say, the y value
for particle 42) follows a trajectory q(t), with velocity q̇(t). If we perturb the trajectory
by δq = ǫ(t), the velocity is perturbed by δq̇ = ǫ̇(t). The change to the Lagrangian
is δL = (∂L/∂q)δq + (∂L/∂q̇)δq̇; the derivatives treat q and q̇ as independent, even
though the perturbations are related. We now integrate the second term by parts
to get a common factor of ǫ in the integral. The usual parts term of the form [uv]
vanishes if we choose ǫ = 0 at either end of the trajectory. The result is of the form
δ
∫

L dt =
∫

X(t) ǫ(t) dt = 0. Since ǫ(t) is arbitrary, we require X(t) = 0, which is
what gives Euler’s equation. Notice that we get one Euler equation for each degree
of freedom in the system: 3N in the case of N interacting particles. When the
coordinates are Cartesian, this clearly gives Newton’s law of motion (at least, for the
simple case of velocity-independent forces). The power of the Lagrangian approach is
that, having deduced the action principle, one can choose generalized coordinates
to obtain less obvious equations of motion.

A field may be regarded as a dynamical system, but with an infinite number of
degrees of freedom. How do we handle this? A hint is provided by electromagnetism,
where we are familiar with writing the total energy in terms of a density which, as we
are dealing with generalized mechanics, we may formally call the Hamiltonian density:

H =

∫

H dV =

∫
(

ǫ0E
2

2
+
B2

2µ0

)

dV. (103)

This suggests that we write the Lagrangian in terms of a Lagrangian density L:
L =

∫

L dV . This quantity is of such central importance in quantum field theory that
it is usually referred to (incorrectly) simply as ‘the Lagrangian’. The action principle
can now be written in the pleasingly relativistic form

δ

∫

L d4xµ = 0. (104)

Actually, this expression applies in special relativity, but not in general. If we make
a coordinate transformation, the volume element in a multidimensional integral picks
up a factor of the Jacobian determinant, and we want the action to be independent of

36



coordinate transformations. Therefore, the Lagrangian L (which is an invariant) should
be multiplied by a factor

√−g, where g is the determinant of the metric (the square
root is because the metric gets two powers of the transformation matrix). In the FRW
case, g = −R6, so this factor is important in treating fields in cosmology.

We can now apply the variational principle as before, considering L to be a
function of a general coordinate, φ, which is the field, and the ‘4-velocity’ ∂µφ. The
argument is similar to the simple Lagrangian case: perturb the space-time trajectory
φ(xµ), which involves five corrections to L: one from δφ and four from its 4-derivatives.
We integrate these latter terms by parts in the corresponding coordinate, and obtain The
equation of motion that corresponds to Euler’s equation is now the Euler–Lagrange
equation

∂

∂xµ

[

∂L
∂(∂µφ)

]

=
∂L
∂φ

, (105)

where we use the shorthand ∂µφ ≡ ∂φ/∂xµ. Note the downstairs index for consistency:
in special relativity, xµ = (ct,x), xµ = (ct,−x) = gµνx

ν . The Lagrangian L and the
field equations are therefore generally equivalent, although the Lagrangian arguably
seems more fundamental: we can obtain the field equations given the Lagrangian, but
inverting the process is less straightforward.

For a simple example, consider waves on a string. If the density per unit length
is σ, the tension is T , and we call the transverse displacement of the string y, then the
(one-dimensional) Lagrangian density is

L = 1
2σẏ

2 − 1
2Ty

′2 (106)

(at least for small displacements). The potential term comes from the work done in
stretching the string. Inserting this in the Euler–Lagrange equation yields a familiar
result:

σÿ − Ty′′ = 0. (107)

This is just the wave equation, and it tells us that the speed of sound in a plucked string
is
√

T/σ.

For quantum mechanics, we want a Lagrangian that will yield the Klein–Gordon
equation. If φ is a single real scalar field, then the required Lagrangian is

L = 1
2∂

µφ∂µφ− V (φ); V (φ) = 1
2µ

2φ2. (108)

Again, we will be content with checking that this does the right thing in a simple case:
the homogeneous model, where L = φ̇2/2 − V (φ). This is now just like the earlier
example, and gives φ̈ = −∂V/∂φ, as required.

noether’s theorem The final ingredient we need before applying scalar fields to
cosmology is to understand that they can be treated as a fluid with thermodynamic
properties like pressure. these properties are derived by a profoundly important general
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argument that relates the existence of global symmetries to conservation laws in physics.
In classical mechanics, conservation of energy and momentum arise by considering
Euler’s equation

d

dt

(

∂L

∂q̇i

)

− ∂L

∂qi
= 0, (109)

where L =
∑

i Ti − Vi is a sum over the difference in kinetic and potential energies
for the particles in a system. If L is independent of all the position coordinates qi,
then we obtain conservation of momentum (or angular momentum, if q is an angular
coordinate): pi ≡ ∂L/∂q̇i = constant for each particle. More realistically, the potential
will depend on the qi, but homogeneity of space says that the Lagrangian as a whole
will be unchanged by a global translation: qi → qi+dq, where dq is some constant.
Using Euler’s equation, this gives conservation of total momentum:

dL =
∑

i

∂L

∂qi
dq ⇒ d

dt

∑

i

pi = 0. (110)

If L has no explicit dependence on t, then

dL

dt
=
∑

i

(

∂L

∂qi
q̇i +

∂L

∂q̇i
q̈i

)

=
∑

i

(ṗiq̇i + piq̈i), (111)

which leads us to define the Hamiltonian as a further constant of the motion

H ≡
∑

i

piq̇i − L = constant. (112)

Something rather similar happens in the case of quantum (or classical) field
theory: the existence of a global symmetry leads directly to a conservation law. The
difference between discrete dynamics and field dynamics, where the Lagrangian is a
density , is that the result is expressed as a conserved current rather than a
simple constant of the motion. Suppose the Lagrangian has no explicit dependence
on spacetime (i.e. it depends on xµ only implicitly through the fields and their 4-
derivatives). As above, we write

dL
dxµ

=
∂L
∂φ

∂φ

∂xµ
+

∂L
∂(∂νφ)

∂(∂νφ)

∂xµ
, (113)

Using the Euler–Lagrange equation to replace ∂L/∂φ and collecting terms results in

d

dxν

[

∂L
∂(∂νφ)

∂φ

∂xµ
− Lgµν

]

≡ d

dxν
Tµν = 0. (114)

This is a conservation law, as we can see by analogy with a simple case like the
conservation of charge. There, we would write

∂µJ
µ = ρ̇+∇∇∇∇∇∇∇∇∇∇∇∇∇ · j = 0, (115)
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where ρ is the charge density, j is the current density, and Jµ is the 4-current. We have
effectively four such equations (one for each value of ν) so there must be four conserved
quantities: clearly energy and the four components of momentum. Conservation of 4-
momentum is expressed by Tµν , which is the 4-current of 4-momentum. For a simple
fluid, it is just

Tµν = diag(ρc2, p, p, p), (116)

so now we can read off the density and pressure generated by a scalar field. Note
immediately the important consequence for cosmology: a potential term −V (φ) in the
Lagrangian produces Tµν = V (φ)gµν . This is the p = −ρ equation of state characteristic
of the cosmological constant. If we now follow the evolution of φ, the cosmological
‘constant’ changes and we have the basis for models of inflationary cosmology.

4 Inflation – II

Topics to be covered:

• Models for inflation

• Slow roll dynamics

• Ending inflation

4.1 Equation of motion

Most of the main features of inflation can be illustrated using the simplest case of a
single real scalar field, with Lagrangian

L = 1
2∂µφ∂

µφ− V (φ) = 1
2 (φ̇

2 −∇2φ)− V (φ). (117)

It turns out that we can get inflation with even the simple mass potential V (φ) =
m2 φ2/2, but it is easy to keep things general. Noether’s theorem gives the energy–
momentum tensor for the field as

Tµν = ∂µφ∂νφ− gµνL. (118)

From this, we can read off the energy density and pressure:

ρ = T 00 = 1
2 φ̇

2 + V (φ) + 1
2 (∇φ)

2

p = T 11 = 1
2 φ̇

2 − V (φ)− 1
6 (∇φ)

2.
(119)

If the field is constant both spatially and temporally, the equation of state is then
p = −ρ, as required if the scalar field is to act as a cosmological constant; note that
derivatives of the field spoil this identification.

We now want to revisit the equation of motion for the scalar field, but with the
critical difference that we place the field in the expanding universe. Everything so far

39



has been special relativity, so we don’t have quite enough formalism to derive the full
equation of motion, but it is

φ̈+ 3Hφ̇−∇2φ+ dV/dφ = 0. (120)

This is a wave equation similar to the one in flat space. The Hubble drag term
3Hφ̇ is the main new feature: loosely, it reflects the fact that the redshifting effects of
expansion will drain energy from the field oscillations.

This is not hard to prove in the homogeneous case, which is the main one of
interest for inflationary applications. This is because ∇φ = ∇comoving φ/R. Since R
increases exponentially, these perturbations are damped away: assuming V is large
enough for inflation to start in the first place, inhomogeneities rapidly become negligible.
In the homogeneous limit, we can simply appeal to energy conservation:

d ln ρ

d ln a
= −3(1 + w) = −3φ̇2/(φ̇2/2 + V ), (121)

following which the relations H = d ln a/dt and V̇ = φ̇V ′ can be used to change variables
to t, and the damped oscillator equation for φ follows.

4.2 The slow-roll approximation

The solution of the equation of motion becomes tractable if we both ignore spatial
inhomogeneities in φ and make the slow-rolling approximation that the φ̈ term
is negligible. The physical motivation here is to say that we are most interested in
behaviour close to de Sitter space, so that the potential dominates the energy density.
This requires

φ̇2/2 ≪ |V (φ)|; (122)

differentiating this gives φ̈ ≪ |dV/dφ|, as required. We therefore have a simple slow-
rolling equation for homogeneous fields:

3Hφ̇ = −dV/dφ. (123)

In combination with Friedmann’s equation in the natural-unit form

H2 =
8π

3m2
P

(φ̇2/2 + V ) ≃ 8π

3m2
P

V, (124)

This gives a powerful but simple apparatus for deducing the expansion history of any
inflationary model.

The conditions for inflation can be cast into useful dimensionless forms. The
basic condition V ≫ φ̇2 can now be rewritten using the slow-roll relation as

ǫ ≡ m2
P

16π
(V ′/V )2 ≪ 1. (125)

Also, we can differentiate this expression to obtain the criterion V ′′ ≪ V ′/mP, or
mPV

′′/V ≪ V ′/V ∼ √
ǫ/mP. This gives a requirement for the second derivative of V

to be small, which we can write as

η ≡ m2
P

8π
(V ′′/V ) ≪ 1 (126)

These two criteria make perfect intuitive sense: the potential must be flat in the sense
of having small derivatives if the field is to roll slowly enough for inflation to be possible.
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4.3 Inflationary models

The curse and joy of inflationary modelling is that nothing is known about the inflaton
field φ, nor about its potential. We therefore consider simple classes of possible example
models, with varying degrees of physical motivation.

(a) (b)

φ

V

φ

V

Figure 10. The two main classes of single-field inflation models: (a)
large-field inflation; (b) small-field inflation. The former is motivated by a
mass-like potential, the latter by something more like the Higgs potential.

If we think about a single field, models can be divided into two basic classes, as
illustrated in figure 10. The simplest are large-field inflation models, in which the
field is strongly displaced from the origin. There is nothing to prevent the scalar field
from reaching the minimum of the potential – but it can take a long time to do so, and
the universe meanwhile inflates by a large factor. In this case, inflation is realized by
means of ‘inertial confinement’. The opposite is when the potential is something like
the Higgs potential, where the gradient vanishes at the origin: this is a model of small-
field inflation. In principle, the field can stay at φ = 0 forever if it is placed exactly
there. One would say that the universe then inhabited a state of false vacuum, as
opposed to the true vacuum at V = 0 (but it is important to be clear that there is no
fundamental reason why the minimum should be at zero density exactly; we will return
to this point).

The first inflation model (Guth 1981) was of the small-field type, but large-field
models have tended to be considered more plausible, for two reasons. The first is to do
with initial conditions. If inflation starts from anywhere near to thermal equilibrium at
a temperature TGUT, we expect thermal fluctuations in φ; the potential should generally
differ from its minimum by an amount V ∼ T 4

GUT
. How then is the special case needed

to trap the potential near φ = 0 to arise? We have returned to the sort of fine-tuned
initial conditions from which inflation was designed to save us. The other issue with
simple small-field models relates to the issue of how inflation ends. This can be viewed
as a form of phase transition, which is continuous or second order in the case of large-
field models. For small-field models, however, the transition to the true vacuum can
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come about by quantum tunnelling, so that the transition is effectively discontinuous
and first order. As we will discuss further below, this can lead to a universe that is
insufficiently homogeneous to be consistent with observations.

chaotic inflation models Most attention is therefore currently paid to the
large-field models where the field finds itself some way from its potential minimum.
This idea is also termed chaotic inflation: there could be primordial chaos, within
which conditions might vary. Some parts may attain the vacuum-dominated conditions
needed for inflation, in which case they will expand hugely, leaving a universe inside a
single bubble – which could be the one we inhabit. In principle this bubble has an edge,
but if inflation persists for sufficiently long, the distance to this nastiness is so much
greater than the current particle horizon that its existence has no testable consequences.

A wide range of inflation models of this kind is possible, especially if it is
realized that inflation need not correspond to de Sitter space, even though this was
taken for granted in early discussions. As discussed earlier, it is only necessary that the
universe enter a phase of ‘superluminal’ expansion in which the equation of state satisfies
p < −ρc2/3. For a pure static field, we will have the usual p = −ρc2 vacuum equation
of state, and so a significant deviation from de Sitter space requires a large contribution
from φ̇ terms, so that the slow-roll conditions may not be satisfied. Intuitively, this
corresponds to a potential that must be steep in some sense that is determined by
the desired time dependence of the scale factor. Three special cases are of particular
interest:

(1) Polynomial inflation. If the potential is taken to be V ∝ φα, then the
scale-factor behaviour can be very close to exponential. This becomes less true
as α increases, but investigations are usually limited to φ2 and φ4 potentials on
the grounds that higher powers are nonrenormalizable.

(2) Power-law inflation. On the other hand, a(t) ∝ tp would suffice, provided
p > 1. The potential required to produce this behaviour is

V (φ) ∝ exp

(√

16π

pm2
P

φ

)

. (127)

This is an exact solution, not a slow-roll approximation.

(3) Intermediate inflation. Another simple time dependence that suffices for
inflation is a(t) ∝ exp[(t/t0)

f ]. In the slow-roll approximation, the required
potential here is V (φ) ∝ φ−β , where β = 4(f−1 − 1).
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ψ

φ

V

Figure 11. A sketch of the potential in hybrid inflation. For φ = 0,
V (ψ) has the symmetry-breaking form of the potential for small-field
inflation, but for large φ there is a simple quadratic minimum in V (ψ).
Evolution in this potential can drive conditions towards ψ = 0 while φ is
large, preparing the way for something similar to small-field inflation.

hybrid inflation One way in which the symmetric nature of the initial condition
for small-field inflation can be made more plausible is to go beyond the space of single-
field inflation. The most popular model in this generalized class is hybrid inflation,
in which there are two fields, with potential

V (φ, ψ) =
1

4λ
(M2 − λψ2)2 + U(φ) + 1

2g
2ψ2φ2. (128)

We can think of this as being primarily V (ψ), but with the form of V controlled by the
second field, φ. For φ = 0, we have the standard symmetry-breaking potential; but for
large φ, φ > M/g, the dependence on ψ becomes parabolic. Evolution in this parabolic
trough at large φ can thus naturally lower ψ close to ψ = 0. If this happens, we have
inflation driven by φ as the inflaton, with V (φ) = U(φ) + λM2/4. This extra constant
in the potential raises H, so the Hubble damping term is particularly high, keeping the
field from rolling away from ψ = 0 until near to φ = 0.

Hybrid inflation therefore has the ability to make some of the features of
the simplest inflation models seem more plausible, while introducing sufficient extra
complexity that one can try to test the robustness of the predictions of the simple
models. The form of the Lagrangian is also claimed to have some fundamental
motivation (although this has been said of many Lagrangians). As a result, hybrid
inflation is rather popular with inflationary theorists.
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criteria for inflation Successful inflation in any of these models requires > 60
e-foldings of the expansion. The implications of this are easily calculated using the
slow-roll equation, which gives the number of e-foldings between φ1 and φ2 as

N =

∫

H dt = − 8π

m2
P

∫ φ2

φ1

V

V ′
dφ (129)

For a potential that resembles a smooth polynomial, V ′ ∼ V/φ, and so we typically
get N ∼ (φstart/mP)

2, assuming that inflation terminates at a value of φ rather smaller
than at the start. The criterion for successful inflation is thus that the initial value of
the field exceeds the Planck scale:

φstart ≫ mP. (130)

This is the real origin of the term ‘large-field’: it means that φ has to be large in
comparison to the Planck scale. By the same argument, it is easily seen that this is also
the criterion needed to make the slow-roll parameters ǫ and η ≪ 1. To summarize, any
model in which the potential is sufficiently flat that slow-roll inflation can commence
will probably achieve the critical 60 e-foldings.

It is interesting to review this conclusion for some of the specific inflation models
listed above. Consider a mass-like potential V = m2φ2. If inflation starts near the
Planck scale, the fluctuations in V are presumably ∼ m4

P
and these will drive φstart to

φstart ≫ mP provided m≪ mP; similarly, for V = λφ4, the condition is weak coupling:
λ≪ 1. Any field with a rather flat potential will thus tend to inflate, just because typical
fluctuations leave it a long way from home in the form of the potential minimum.

This requirement for weak coupling and/or small mass scales near the Planck
epoch is suspicious, since quantum corrections will tend to re-introduce the Planck
scale. In this sense, especially with the appearance of the Planck scale as the minimum
required field value, it is not clear that the aim of realizing inflation in a classical way
distinct from quantum gravity has been fulfilled.

4.4 Ending inflation

bubble nucleation and the graceful exit In small-field inflation, as in
with Guth’s initial idea, the potential is trapped at φ = 0, and eventually undergoes a
first-order phase transition. This model suffers from the problem that it predicts residual
inhomogeneities after inflation is over that are far too large. This is easily seen: because
the transition is first-order, it proceeds by bubble nucleation, where the vacuum
tunnels between false and true vacua. However, the region occupied by these bubbles
will grow as a causal process, whereas outside the bubbles the exponential expansion of
inflation continues. This means that it is very difficult for the bubbles to percolate and
eliminate the false vacuum everywhere, as is needed for an end to inflation. Instead,
inflation continues indefinitely, with the bubbles of true vacuum having only a small
filling factor at any time.
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If Γ is the rate at which tunnelling leads to the nucleation of new bubbles per
unit volume, then percolation requires

Γ/H4 ∼ 1. (131)

This can be justified roughly by imagining the universe exponentiating in jumps of
time t ∼ 1/H. After t, the new volume of false vacuum created is ∼ V , but we
have N ∼ ΓV t bubbles, each of which expands to ct, so the volume of new true
vacuum is ∼ N(ct)3. This new volume is subdominant unless Γ/H4 ∼ 1. Because
the tunnelling rate is exponentially suppressed, this is hard to achieve. This graceful
exit problem motivated variants in which the phase transition is second order, and
proceeds continuously by the field rolling slowly but freely down the potential.

reheating As we have seen, slow-rolling behaviour requires the field derivatives to
be negligible; but the relative importance of time derivatives increases as V approaches
zero (if the minimum is indeed at zero energy). Even if the potential does not steepen,
sooner or later we will have ǫ ≃ 1 or |η| ≃ 1 and the inflationary phase will cease. Instead
of rolling slowly ‘downhill’, the field will oscillate about the bottom of the potential,
with the oscillations becoming damped by the 3Hφ̇ friction term. Eventually, we will be
left with a stationary field that either continues to inflate without end, if V (φ = 0) > 0,
or which simply has zero density.

However, this conclusion is incomplete, because we have so far neglected the
couplings of the scalar field to matter fields. Such couplings will cause the rapid
oscillatory phase to produce particles, leading to reheating. Thus, even if the
minimum of V (φ) is at V = 0, the universe is left containing roughly the same energy
density as it started with, but now in the form of normal matter and radiation – which
starts the usual FRW phase, albeit with the desired special ‘initial’ conditions.

As well as being of interest for completing the picture of inflation, it is essential to
realize that these closing stages of inflation are the only ones of observational relevance.
Inflation might well continue for a huge number of e-foldings, all but the last few
satisfying ǫ, η ≪ 1. However, the scales that left the de Sitter horizon at these early
times are now vastly greater than our observable horizon, c/H0, which exceeds the de
Sitter horizon by only a finite factor – about e60 for GUT-scale inflation, as we saw
earlier. Realizing that the observational regime corresponds only to the terminal phases
of inflation is both depressing and stimulating: depressing, because φ may well not
move very much during the last phases – our observations relate only to a small piece
of the potential, and we cannot hope to recover its form without substantial a priori

knowledge; stimulating, because observations even on very large scales must relate to
a period where the simple concepts of exponential inflation and scale-invariant density
fluctuations were coming close to breaking down. This opens the possibility of testing
inflation theories in a way that would not be possible with data relating to only the
simpler early phases. These tests take the form of tilt and gravitational waves in the
final perturbation spectrum, to be discussed further below.
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5 Fluctuations from inflation

Topics to be covered:

• Description of inhomogeneity

• Mechanisms for fluctuation generation

• Tilt and tensor modes

• Eternal inflation

5.1 The perturbed universe

We now need to consider the greatest achievement of inflation, which was not anticipated
when the theory was first put forward: it provides a concrete mechanism for generating
the seeds of structure in the universe. In essence, the idea is that the inevitable small
quantum fluctuations in the inflaton field φ are transformed into residual classical
fluctuations in density when inflation is over. The details of this process can be technical,
and could easily fill a lecture course. The following treatment is therefore simplified as
far as possible, while still making contact with the full results.

quantifying inhomogeneity The first issue we have to deal with is how to
quantify departures from uniform density. Frequently, an intuitive Newtonian approach
can be used, and we will adopt this wherever possible. But we should begin with a
quick overview of the relativistic approach to this problem, to emphasise some of the
big issues that are ignored in the Newtonian method.

Because relativistic physics equations are written in a covariant form in which all
quantities are independent of coordinates, relativity does not distinguish between active

changes of coordinate (e.g. a Lorentz boost) or passive changes (a mathematical change
of variable, normally termed a gauge transformation). This generality is a problem, as
we can see by asking how some scalar quantity S (which might be density, temperature
etc.) changes under a gauge transformation xµ → x′µ = xµ+ǫµ. A gauge transformation
induces the usual Lorentz transformation coefficients dx′µ/dxν (which have no effect on
a scalar), but also involves a translation that relabels spacetime points. We therefore
have S′(xµ + ǫµ) = S(xµ), or

S′(xµ) = S(xµ)− ǫα∂S/∂xα. (132)

Consider applying this to the case of a uniform universe; here ρ only depends on time,
so that

ρ′ = ρ− ǫ0ρ̇. (133)

An effective density perturbation is thus produced by a local alteration in the time
coordinate: when we look at a universe with a fluctuating density, should we really
think of a uniform model in which time is wrinkled? This ambiguity may seem absurd,
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and in the laboratory it could be resolved empirically by constructing the coordinate
system directly – in principle by using light signals. This shows that the cosmological
horizon plays an important role in this topic: perturbations with wavelength λ <

∼ ct
inhabit a regime in which gauge ambiguities can be resolved directly via common sense.
The real difficulties lie in the super-horizon modes with λ >

∼ ct. Within inflationary
models, however, these difficulties can be overcome, since the true horizon is ≫ ct.

The most direct general way of solving these difficulties is to construct
perturbation variables that are explicitly independent of gauge. A comprehensive
technical discussion of this method is given in chapter 7 of Mukhanov’s book, and we
summarize the essential elements here, largely without proof. First, we need to devise
a notation that will classify the possible perturbations. Since the metric is symmetric,
there are 10 independent degrees of freedom in gµν ; a convenient scheme that captures
these possibilities is to write the cosmological metric as

dτ2 = a2(η)
{

(1 + 2φ)dη2 + 2widη dx
i − [(1− 2ψ)γij + 2hij ] dx

i dxj
}

. (134)

In this equation, η is conformal time,

dη = dt/a(t), (135)

and γij is the comoving spatial part of the Robertson-Walker metric.

The total number of degrees of freedom here is apparently 2 (scalar fields φ and
ψ) + 3 (3-vector field w) + 6 (symmetric 3-tensor hij) = 11. To get the right number,
the tensor hij is required to be traceless: γijhij = 0.

Metric perturbations can be split into three classes: scalar perturbations,
which are described by scalar functions of spacetime coordinate, and which correspond
to growing density perturbations; vector perturbations, which correspond
to vorticity perturbations, and tensor perturbations, which correspond to
gravitational waves. Here, we shall concentrate mainly on scalar perturbations.

Since vectors and tensors can be generated from derivatives of a scalar function,
the most general scalar perturbation actually makes contributions to all the gµν
components in the above expansion:

δgµν = a2
(

2φ −B,i

−B,i 2[ψδij − E,ij ]

)

, (136)

where four scalar functions φ, ψ, E and B are involved. It turns out that this situation
can be simplified by defining variables that are unchanged by a gauge transformation:

Φ ≡ φ+
1

a
[(B − E′)a]′

Ψ ≡ ψ − a′

a
(B − E′),

(137)

where primes denote derivatives with respect to conformal time.
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A key result is that scalar perturbations can be described by just two gauge-
invariant ‘potentials’ (functions of spacetime coordinates). Since these are gauge-
invariant, we may as well write the perturbed metric in a particular gauge that makes
things look as simple as possible. This is the longitudinal gauge in which the time
and space parts of the RW metric are perturbed separately:

dτ2 = (1 + 2Ψ)dt2 − (1− 2Φ)γij dx
i dxj . (138)

Health warning: there are different conventions, and the symbols for the potentials are
sometimes swapped, or signs flipped.

These gauge-invariant ‘potentials’ have a fairly direct physical interpretation,
since they are closely related to the Newtonian potential. A second key result is that
inserting the longitudinal metric into the Einstein equations shows that Ψ and Φ are
identical in the case of fluid-like perturbations where off-diagonal elements of the energy–
momentum tensor vanish. In this case, the longitudinal gauge becomes identical to the
Newtonian gauge, in which perturbations are described by a single scalar field,
which is the gravitational potential:

dτ2 = (1 + 2Φ)dt2 − (1− 2Φ)γij dx
i dxj , (139)

and this should be quite familiar. If we consider small scales, so that the spatial metric
γij becomes that of flat space, then this form matches, for example, the Schwarzschild
metric with Φ = −GM/r, in the limit Φ/c2 ≪ 1.

The conclusion is thus that the gravitational potential can for many purposes give
an effectively gauge-invariant measure of cosmological perturbations. The advantage of
this fact is that the gravitational potential is a familiar object, which we can manipulate
and use our Newtonian intuition. This is still not guaranteed to give correct results
on scales greater than the horizon, however, so a fully relativistic approach is to be
preferred. But with the length restrictions of this course, it is hard to go beyond the
Newtonian approach. The main results of the full theory can at least be understood
and made plausible in this way.

Informally, the potential Φ is a measure of space-time curvature which solves the
gauge issue and has meaning on super-horizon scales. A key property, which is perhaps
intuitively reasonable, is that Φ is constant in time for perturbations with wavelengths
much larger than the horizon. Conversely, interesting effects can happen inside the
horizon, which imprints characteristic scale-dependent features on the cosmological
inhomogeneities. A full justification of the constancy of Φ using a complete relativistic
treatment would take too much space in the present course, and we will generally discuss
perturbations using a Newtonian approach. This does yield the correct conclusion
regarding the constancy of Φ, but we should be clear that this is at best a consistency
check, since we will use a treatment of gravity that is restricted to static fields.

fluctuation power spectra From the Newtonian point of view, potential
fluctuations are directly related to those in density via Poisson’s equation:

∇2Φ/a2 = 4πG(1 + 3w) ρ̄ δ, (140)
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where we have defined a dimensionless fluctuation amplitude

δ ≡ ρ− ρ̄

ρ̄
. (141)

the factor of a2 is there so we can use comoving length units in ∇2 and the factor
(1 + 3w) accounts for the relativistic active mass density ρ+ 3p.

We are very often interested in asking how these fluctuations depend on scale,
which amounts to making a Fourier expansion:

δ(x) =
∑

δke
−ik·x, (142)

where k is the comoving wavevector. What are the allowed modes? If the field were
periodic within some box of side L, we would have the usual harmonic boundary
conditions

kx = n
2π

L
, n = 1, 2 · · · , (143)

and the inverse Fourier relation would be

δk(k) =

(

1

L

)3 ∫

δ(x) exp
(

ik · x
)

d3x. (144)

Working in Fourier space in this way is powerful because it immediately gives a way
of solving Poisson’s equation and relating fluctuations in density and potential. For a
single mode, ∇2 → −k2, and so

Φk = −4πG(1 + 3w)a2 ρ̄ δk/k
2. (145)

The fluctuating density field can be described by its statistical properties. The
mean is zero by construction; the variance is obtained by taking the volume average of
δ2:

〈δ2〉 =
∑

|δk|2. (146)

To see this result, write the lhs instead as 〈δδ∗〉 (makes no difference for a real field),
and appreciate that all cross terms integrate to zero via the boundary conditions. For
obvious reasons, the quantity

P (k) ≡ |δk|2 (147)

is called the power spectrum. Note that, in an isotropic universe, we assume
that P will be independent of direction of the wavevector in the limit of a large box:
the fluctuating density field is statistically isotropic. In applying this apparatus, we
would not want the (arbitrary) box size to appear. This happens naturally: as the
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box becomes big, the modes are finely spaced and a sum over modes is replaced by an
integral over k space times the usual density of states, (L/2π)3:

〈δ2〉 =
∑

|δk|2 → L3

(2π)3

∫

P (k) d3k =

∫

∆2(k) d ln k. (148)

In the last step, we have defined the combination

∆2(k) ≡ L3

(2π)3
4πk3 P (k), (149)

which absorbs the box size into the definition of a dimensionless power spectrum, which
gives the contribution to the variance from each logarithmic range of wavenumber (or
wavelength). Despite the attraction of a dimensionless quantity, one still frequently sees
plots of P (k) – and often in a dimensionally fudged form in which L = 1 is assumed,
and P given units of volume.
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6 Structure formation – I

6.1 Newtonian equations of motion

We have decided that perturbations will in most cases effectively be described by the
Newtonian potential, Φ. Now we need to develop an equation of motion for Φ, or
equivalently for the density fluctuation ρ ≡ (1 + δ)ρ̄. In the Newtonian approach, we
treat dynamics of cosmological matter exactly as we would in the laboratory, by finding
the equations of motion induced by either pressure or gravity. We begin by casting the
problem in comoving units:

x(t) = a(t)r(t)

δv(t) = a(t)u(t),
(150)

so that x has units of proper length, i.e. it is an Eulerian coordinate. First
note that the comoving peculiar velocity u is just the time derivative of the comoving
coordinate r:

ẋ = ȧr+ aṙ = Hx+ aṙ, (151)

where the rhs must be equal to the Hubble flow Hx, plus the peculiar velocity δv = au.

The equation of motion follows from writing the Eulerian equation of motion as
ẍ = g0 + g, where g = −∇∇∇∇∇∇∇∇∇∇∇∇∇Φ/a is the peculiar acceleration, and g0 is the acceleration
that acts on a particle in a homogeneous universe (neglecting pressure forces to start
with, for simplicity). Differentiating x = ar twice gives

ẍ = au̇+ 2ȧu+
ä

a
x = g0 + g. (152)

The unperturbed equation corresponds to zero peculiar velocity and zero peculiar
acceleration: (ä/a)x = g0; subtracting this gives the perturbed equation of motion

u̇+ 2(ȧ/a)u = g/a = −∇∇∇∇∇∇∇∇∇∇∇∇∇Φ/a2. (153)

This equation of motion for the peculiar velocity shows that u is affected by gravitational
acceleration and by the Hubble drag term, 2(ȧ/a)u. This arises because the peculiar
velocity falls with time as a particle attempts to catch up with successively more distant
(and therefore more rapidly receding) neighbours. In the absence of gravity, we get
δv ∝ 1/a: momentum redshifts away, just as with photon energy.

The peculiar velocity is directly related to the evolution of the density field,
through conservation of mass. This is described by the usual continuity equation
ρ̇ = −∇∇∇∇∇∇∇∇∇∇∇∇∇ · (ρv, where ρ = ρ̄(1 + δ) and proper length units are assumed. If we use
comoving length units, the mean density is constant and this is easily transformed to

δ̇ = −∇∇∇∇∇∇∇∇∇∇∇∇∇ · [(1+ δ)u]. (154)

In more detail, we can write the continuity equation in the form

d

dt
ρ0(1 + δ) = −ρ0(1 + δ)∇∇∇∇∇∇∇∇∇∇∇∇∇ · u, (155)
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where spatial derivatives are with respect to comoving coordinates:

∇∇∇∇∇∇∇∇∇∇∇∇∇ ≡ a∇∇∇∇∇∇∇∇∇∇∇∇∇proper, (156)

and the time derivative is a convective one:

d

dt
=

∂

∂t
+ u · ∇∇∇∇∇∇∇∇∇∇∇∇∇, (157)

i.e. the time derivative measured by an observer who follows a particle’s trajectory.
Finally, when using a comoving frame, the background density ρ0 is unaffected by d/dt,
and so the full continuity equation can be written as

d

dt
δ = −(1 + δ)∇∇∇∇∇∇∇∇∇∇∇∇∇ · u. (158)

linear approximation The equation for δ is not linear in the perturbations δ
and u. To cure this, we restrict ourselves to the case δ ≪ 1 and linearize the equation,
neglecting second-order terms like δ × u, which removes the distinction between
convective and partial time derivatives. The linearized equations for conservation
of momentum and matter as experienced by fundamental observers moving with the
Hubble flow are then:

u̇+ 2
ȧ

a
u =

g

a

δ̇ = −∇∇∇∇∇∇∇∇∇∇∇∇∇ · u,
(159)

where the peculiar gravitational acceleration −∇∇∇∇∇∇∇∇∇∇∇∇∇Φ/a is denoted by g.

The solutions of these equations can be decomposed into modes either parallel to
g or independent of g (these are the homogeneous and inhomogeneous solutions to the
equation of motion). The homogeneous case corresponds to no peculiar gravity – i.e.
zero density perturbation. This is consistent with the linearized continuity equation,
∇∇∇∇∇∇∇∇∇∇∇∇∇ · u = −δ̇, which says that it is possible to have vorticity modes with∇∇∇∇∇∇∇∇∇∇∇∇∇ · u = 0 for
which δ̇ vanishes, so there is no growth of structure in this case. The proper velocities
of these vorticity modes decay as v = au ∝ a−1, as with the kinematic analysis for a
single particle.

growing mode For the growing mode, it is most convenient to eliminate u by
taking the divergence of the equation of motion for u, and the time derivative of the
continuity equation. This requires a knowledge of ∇∇∇∇∇∇∇∇∇∇∇∇∇ · g, which comes via Poisson’s
equation: ∇∇∇∇∇∇∇∇∇∇∇∇∇ · g = 4πGaρ0δ. The resulting 2nd-order equation for δ is

δ̈ + 2
ȧ

a
δ̇ = 4πGρ0 δ. (160)

This is easily solved for the Ωm = 1 case, where 4πGρ0 = 3H2/2 = 2/3t2, and a
power-law solution works:

δ(t) ∝ t2/3 or t−1. (161)
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The first solution, with δ(t) ∝ a(t) is the growing mode, corresponding to the
gravitational instability of density perturbations. Given some small initial seed
fluctuations, this is the simplest way of creating a universe with any desired degree
of inhomogeneity.

radiation-dominated universe The analysis so far does not apply when the
universe was radiation dominated (cs = c/

√
3). It is common to resort to general

relativity perturbation theory at this point. However, the fields are still weak, and so
it is possible to generate the results we need by using special relativity fluid mechanics
and Newtonian gravity with a relativistic source term:

∇2Φ = 4πG(ρ+ 3p/c2), (162)

in Eulerian units.

The special-relativity fluid mechanics is not hard in principle, but we lack the time
to go through it here. The logic is fairly straightforward, since the conservation equation
we need comes from the 4-divergence of the energy-momentum tensor: T.

µν/dxµ = 0.
In the rest frame, Tµν = diag(ρc2, p, p, p), so we just need to apply a shift to the lab
frame: T → M̃ ·T ·M, where M is the matrix of Lorentz transformation coefficients.
An easier way of achieving this is to use manifest covariance:

Tµν = (ρ+ p/c2)UµUν − pgµν , (163)

where Uµ is the 4-velocity. This is clearly a tensor, so we immediately have all the
components when the velocity is non-zero, and it is straightforward to generate the
equations of relativistic fluid mechanics. These equations look quite similar to the
nonrelativistic equations, but with extra terms where the pressure is non-negligible. The
main change from the previous treatment come from a factor of 2 from the (ρ+ 3p/c2)
term in Poisson’s equation, and other contributions of the pressure to the relativistic
equation of motion, such as (ρ+ p/c2) = (4/3)ρ. The resulting evolution equation for δ
has a driving term on the rhs that is a factor 8/3 higher than in the matter-dominated
case

δ̈ + 2
ȧ

a
δ̇ =

32π

3
Gρ0δ. (164)

In both matter- and radiation-dominated universes with Ω = 1, we have ρ0 ∝ 1/t2:

matter domination (a ∝ t2/3) : 4πGρ0 =
2

3t2

radiation domination (a ∝ t1/2) : 32πGρ0/3 =
1

t2
.

(165)

Every term in the equation for δ is thus the product of derivatives of δ and powers of
t, and a power-law solution is obviously possible. If we try δ ∝ tn, then the result is
n = 2/3 or −1 for matter domination; for radiation domination, this becomes n = ±1.

The results for matter domination and radiation domination can be neatly
combined to say that in both cases gravitational potential perturbations are independent
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of time (at least while Ω = 1). Poisson’s equation tells us that −k2Φ/a2 ∝ ρ δ; since
ρ ∝ a−3 for matter domination or a−4 for radiation, that gives Φ ∝ δ/a or δ/a2

respectively, so that

Φ = constant (166)

in either case. In other words, the metric fluctuations resulting from potential
perturbations are frozen, at least for perturbations with wavelengths greater than the
horizon size. This simple result at least has an intuitive plausibility for the radiation-
dominated case, despite the lack of a derivation.

Lastly, it will also be useful to express the growing mode in one other way. We
have growing modes proportional to t2/3 or t in the matter and radiation eras, during
which the scale factor changes as t2/3 or t1/2 respectively. Now consider the particle
horizon: its proper size is ∼ ct, so the comoving value scales as t1/3 or t1/2 respectively
(divide by a[t]). Thus, in either era,

δ(t) ∝ D2
H
(t). (167)

In other words, fluctuation amplitude always scales as the square of conformal time.

models with non-critical density We have solved the growth equation for
the matter-dominated Ω = 1 case. It is possible to cope with other special cases
(e.g. matter + curvature) with some effort. In the general case (especially with a
general vacuum having w 6= −1), it is necessary to integrate the differential equation
numerically. At high z, we always have the matter-dominated δ ∝ a, and this serves as
an initial condition. In general, we can write

δ(a) ∝ a f [Ωm(a)], (168)

where the factor f expresses a deviation from the simple growth law. For flat models
with Ωm + Ωv = 1, a useful approximation is f ≃ Ω0.23

m , which is less marked than
f ≃ Ω0.65

m in the Λ = 0 case. This reflects the more rapid variation of Ωv with
redshift; if the cosmological constant is important dynamically, this only became so very
recently, and the universe spent more of its history in a nearly Einstein–de Sitter state
by comparison with an open universe of the same Ωm. Interestingly, this difference is
erased if we look at the growth rate , in which case we have the almost universal formula

fg ≡ d ln δ

d ln a
= Ωm(a)γ , (169)

where γ is close to 0.6, independently of whether there is significant vacuum energy.
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6.2 Pressure and the shape of the matter power spectrum

So far, we have mainly considered the collisionless component. For the photon-baryon
gas, all that changes is that the peculiar acceleration gains a term from the pressure
gradients:

g = −∇∇∇∇∇∇∇∇∇∇∇∇∇Φ/a−∇∇∇∇∇∇∇∇∇∇∇∇∇p/(aρ). (170)

The pressure fluctuations are related to the density perturbations via the sound speed

c2s ≡ ∂p

∂ρ
. (171)

Now think of a plane-wave disturbance δ ∝ e−ik·r, where k and r are in comoving units.
All time dependence is carried by the amplitude of the wave. The linearized equation
of motion for δ then gains an extra term on the rhs from the pressure gradient:

δ̈ + 2
ȧ

a
δ̇ = δ

(

4πGρ0 − c2sk
2/a2

)

. (172)

This shows that there is a critical proper wavelength, the Jeans length, at which
we switch from the possibility of gravity-driven growth for long-wavelength modes to
standing sound waves at short wavelengths. This critical length is

λproper
J

=
2π

kproperJ

= cs

√

π

Gρ
. (173)

Prior to matter-radiation equality, the speed of sound for a radiation-dominated fluid
with p = u/3 is cs = c/

√
3, so this Jeans length is close to the horizon size.

A perturbation of given comoving wavelength will start out larger than the
horizon, but the horizon grows with time, and so the perturbation ‘enters the horizon’
(not very good terminology, but standard). After that time, pressure forces dominate
over gravity, and the perturbation oscillates as a standing sound wave, which turns out
to have a constant amplitude in δ during the radiation era; but zero-pressure growth
would result in δ increasing with time, so the amplitude of small-scale fluctuations
falls relative to the growing mode. Since the growing mode corresponds to constant
potential, this means that the potential decays as 1/δgrow ∝ 1/a2. All this can be
solved exactly for the radiation-dominated era, and the effective damping of the initial
potential fluctuation is

Φ

Φi
= 3(sinx− x cosx)/x3; x ≡ kcsη, (174)

where η is conformal time, dη ≡ dt/a(t), which is thus equal to the comoving particle
horizon size. We will see later that the imprint of these acoustic oscillations is
visible in the microwave background.

At these early times, the dark matter is a minority constituent of the universe,
but it suffers an interesting and critical effect from the above behaviour of the coupled
baryon-photon fluid (which is glued together by Thomson scattering). The small-scale
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damping of the waves results in the radiation becoming smooth, which breaks the usual
adiabatic relation in which the matter density and the photon number density have equal
perturbations. Now recall the growth equation for matter perturbations, neglecting
pressure:

δ̈ + 2
ȧ

a
δ̇ = 4πGρ0 δ. (175)

The rhs contains the combination ρ0δ; this is just the fluctuation in density, which drives
the gravitational growth. But the growing mode with Φ constant only arises if ρ0 is the
total density, which also sets the timescale for expansion. If the majority constituent
of the universe (the radiation, at early times) is uniform, then the rhs becomes ∝ ρmδ,
which is ≪ ρ0δ. Thus the growth switches off.

Figure 12 shows a schematic of the resulting growth history for matter density
fluctuations. For scales greater than the horizon, perturbations in matter and radiation
can grow together, so fluctuations at early times grow at the same rate, independent
of wavenumber. But this growth ceases once the perturbations ‘enter the horizon’ –
i.e. when the horizon grows sufficiently to exceed the perturbation wavelength. At this
point, growth ceases. For fluids (baryons) it is the radiation pressure that prevents
the perturbations from collapsing further. For collisionless matter the rapid radiation
driven expansion prevents the perturbation from growing again until matter radiation
equality.

This effect (called the Mészáros effect) is critical in shaping the late-time power
spectrum (as we will show) as the universe preserves a ‘snapshot’ of the amplitude
of the mode at horizon crossing. Before this process operates, inflation predicts an
approximately scale invariant initial Zeldovich spectrum where Pi(k) ∝ k. How does
the Mészáros effect modify the shape of this initial power spectrum?

Figure 13 shows that the smallest physical scales (largest k scales) will be affected
first and experience the strongest suppression to their amplitude. The largest physical
scale fluctuations (smallest k scales) will be unaffected as they will enter the horizon
after matter-radiation equality. We can therefore see that there will be a turnover in the
power spectrum at a characteristic scale given by the horizon size at matter-radiation
equality.

From Figure 12 we can see that when a fluctuation enters the horizon before
matter-radiation equality its growth is suppressed by f = (aenter/aeq)

2. A fluctuation k
enters the horizon when DH ≃ 1/k. As DH = c/aH(a) and H(a) ∝ a−2 during radiation
domination we see that the fluctuations are suppressed by a factor f ∝ k−2 and that
the power spectrum on large k scales follows a k−3 power law.

mészáros effect What about the case of collisionless matter in a radiation
background? The fluid treatment is not appropriate here, since the two species
of particles can interpenetrate. A particularly interesting limit is for perturbations
well inside the horizon: the radiation can then be treated as a smooth, unclustered
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Figure 12. A schematic of the suppression of fluctuation growth
during the radiation dominated phase when the density perturbation
enters the horizon at aenter < aeq.

background that affects only the overall expansion rate. This is analogous to the effect
of Λ, but an analytical solution does exist in this case. The perturbation equation is as
before

δ̈ + 2
ȧ

a
δ̇ = 4πGρmδ, (176)

but now H2 = 8πG(ρm + ρr)/3. If we change variable to y ≡ ρm/ρr = a/aeq, and use
the Friedmann equation, then the growth equation becomes

δ′′ +
2 + 3y

2y(1 + y)
δ′ − 3

2y(1 + y)
δ = 0 (177)

(for zero curvature, as appropriate for early times). It may be seen by inspection that
a growing solution exists with δ′′ = 0:

δ ∝ y + 2/3. (178)

It is also possible to derive the decaying mode. This is simple in the radiation-dominated
case (y ≪ 1): δ ∝ − ln y is easily seen to be an approximate solution in this limit.
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Figure 13. Schematic of the how the Mészáros effect modifies the
initial power spectrum. Note log scale.

What this says is that, at early times, the dominant energy of radiation drives
the universe to expand so fast that the matter has no time to respond, and δ is frozen
at a constant value. At late times, the radiation becomes negligible, and the growth
increases smoothly to the Einstein–de Sitter δ ∝ a behaviour (Mészáros 1974). The
overall behaviour is therefore reminiscent to the effects of pressure on a coupled fluid,
where growth is suppressed below the Jeans scale. However, the two phenomena are
really quite different. In the fluid case, the radiation pressure prevents the perturbations
from collapsing further; in the collisionless case, the photons have free-streamed away,
and the matter perturbation fails to collapse only because radiation domination ensures
that the universe expands too quickly for the matter to have time to self-gravitate.

This effect is critical in shaping the late-time power spectrum. For scales
greater than the horizon, perturbations in matter and radiation can grow together,
so fluctuations at early times grow at the same rate, independent of wavenumber. But
this growth ceases once the perturbations ‘enter the horizon’ – i.e. when the horizon
grows sufficiently to exceed the perturbation wavelength. At this point, growth ceases,
so the universe preserves a ‘snapshot’ of the amplitude of the mode at horizon crossing.
For a scale-invariant spectrum, this implies a dimensionless power δ2(k) ≃ δ2

H
on small

scales, breaking to the initial δ2(k) ∝ k4 on large scales. Observing this break and using
it to measure the density of the universe has been one of the great success stories in
recent cosmological research.
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6.3 Coupled perturbations

We will often be concerned with the evolution of perturbations in a universe that
contains several distinct components (radiation, baryons, dark matter). It is easy to
treat such a mixture if only gravity is important (i.e. for large wavelengths). Look at
the perturbation equation in the form

Lδ = driving term, L ≡ ∂2

∂t2
+

2ȧ

a

∂

∂t
. (179)

The rhs represents the effects of gravity, and particles will respond to gravity whatever
its source. The coupled equations for several species are thus given by summing the
driving terms for all species.

matter plus radiation The only subtlety is that we must take into account the
peculiarity that radiation and pressureless matter respond to gravity in different ways,
as seen in the equations of fluid mechanics. The coupled equations for perturbation
growth are thus

L

(

δm
δr

)

= 4πG

(

ρm 2ρr
4ρm/3 8ρr/3

)(

δm
δr

)

. (180)

Solutions to this will be simple if the matrix has time-independent eigenvectors. Only
one of these is in fact time independent: (1, 4/3). This is the adiabatic mode
in which δr = 4δm/3 at all times. This corresponds to some initial disturbance in
which matter particles and photons are compressed together. The entropy per baryon is
unchanged, δ(T 3)/(T 3) = δm, hence the name ‘adiabatic’. In this case, the perturbation
amplitude for both species obeys Lδ = 4πG(ρm + 8ρr/3)δ. We also expect the baryons
and photons to obey this adiabatic relation very closely even on small scales: the
tight coupling approximation says that Thomson scattering is very effective
at suppressing motion of the photon and baryon fluids relative to each other.

isocurvature modes Since there are two degrees of freedom in the matter-
radiation perturbation, there must be a second independent perturbation mode to
complement the adiabatic solution. This clearly must correspond to a perturbation
in the entropy. If we define S = T 3/ρm, then

δ lnS = 3
4δr − δm. (181)

In the case of adiabatic initial conditions, S is not perturbed, but the overall energy
density fluctuates. The opposite extreme, therefore, is to keep the energy density
constant but allow the entropy to fluctuate. We therefore consider constant density
at some initial time:

ρimδ
i
m = −ρirδir. (182)

Because spacetime curvature depends on the overall perturbation to the matter density,
these initial conditions are known as the isocurvature mode. Normally, we will
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imagine that whatever may generate such a fluctuation in the equation of state happens
at early times where things are heavily radiation dominated. In this case, the initial
conditions are effectively isothermal:

δir → 0. (183)

The treatment of isothermal perturbations caused some confusion in the older
literature. They are not a pure mode – i.e. isothermal perturbations do not stay
isothermal, nor indeed does the overall matter density always obey the isocurvature
initial condition. This is readily seen by appreciating that (on large scales, where we
ignore pressure) causality means that the entropy perturbation must be preserved. Thus,
whatever initial conditions we choose for δr and δm, any subsequent changes to matter
and radiation on large scales must be adiabatic. If the initial conditions are effectively
isothermal, then

δr =
4

3
(δm − δi), (184)

where δi is the initial value of δm.

Subsequent evolution attempts to preserve the initial constant density by making
the matter perturbations decrease while the amplitude of δr increases (this δρ = 0
condition is not satisfied in detail, but we will skip the full solution here). At late
times, δm → 0, while δr → −4δi/3. Hence, as the universe becomes strongly matter
dominated, the entropy perturbation becomes carried entirely by the photons. This
leads to an increased amplitude of microwave-background anisotropies in isocurvature
models, which is one reason why such models are not popular.

It should now be clear why the isothermal perturbation is not a proper mode. At
a general time, it corresponds to a mixture of adiabatic and isocurvature perturbations
and so cannot stay isothermal. Similarly, in the curvaton model, a scalar field with
inflationary fluctuations decays at late time to produce a fluctuating radiation field with
δm = 0. This case yields a mixture of adiabatic and isocurvature modes, such that the
temperature fluctuations are comparable at matter-radiation equality. As with pure
isocurvature fluctuations, this can be rejected with current data. But more complex
models with a small isocurvature fraction are always permitted; one of the tasks of
modern cosmology is to improve the limits on such mixtures to the point where the
initial conditions are proved to be in effect perfectly adiabatic.

6.4 Transfer functions and characteristic scales

The above discussion can be summed up in the from of the linear transfer function
for density perturbations, where we factor out the long-wavelength growth law from a
term that expresses how growth is modulated as a function of wavenumber:

δ(a) ∝ g(a)Tk. (185)
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While curvature is negligible, we have seen that g(a) is proportional to the square of
conformal time for adiabatic perturbations. In principle, there is a transfer function
for each constituent of the universe, and these evolve with time. As we have discussed,
however, the different matter ingredients tend to come together at late times, and the
overall transfer function tends to something that is the same for all matter components
and which does not change with time for low redshifts. This late-time transfer function
is therefore an important tool for cosmologists who want to predict observed properties
of density fields in the current universe.

We have discussed the main effects that contribute to the form of the transfer
function, but a full calculation is a technical challenge. In detail, we have a mixture of
matter (both collisionless dark particles and baryonic plasma) and relativistic particles
(collisionless neutrinos and collisional photons), which does not behave as a simple fluid.
Particular problems are caused by the change in the photon component from being a
fluid tightly coupled to the baryons by Thomson scattering, to being collisionless after
recombination. Accurate results require a solution of the Boltzmann equation to follow
the evolution of the full phase-space distribution. This was first computed accurately
by Bond & Szalay (1983), and is today routinely available via public-domain codes such
as cmbfast.

Some illustrative results are shown in figure 14. Leaving aside the isocurvature
models, all adiabatic cases have T → 1 on large scales – i.e. there is growth at the
universal rate (which is such that the amplitude of potential perturbations is constant
until the vacuum starts to be important at z <∼ 1). The different shapes of the functions
can be understood intuitively in terms of a few special length scales, as follows:

(1) Horizon length at matter-radiation equality. The main bend
visible in all transfer functions is due to the Mészáros effect (discussed above), which
arises because the universe is radiation dominated at early times. The relative
diminution in fluctuations at high k is the amount of growth missed out on between
horizon entry and zeq, which would be δ ∝ D2

H
in the absence of the Mészáros effect.

Perturbations with larger k enter the horizon when DH ≃ 1/k; they are then frozen
until zeq, at which point they can grow again. The missing growth factor is just the
square of the change in DH during this period, which is ∝ k2. The approximate limits
of the CDM transfer function are therefore

Tk ≃
{

1 kDH(zeq) ≪ 1
[kDH(zeq)]

−2 kDH(zeq) ≫ 1.
(186)

This process continues until the universe becomes matter dominated. We therefore
expect a characteristic ‘break’ in the fluctuation spectrum around the comoving horizon
length at this time, which we have seen is DH(zeq) = 16 (Ωmh

2)−1Mpc. Since distances
in cosmology always scale as h−1, this means that Ωmh should be observable.

(2) Free-streaming length. This relatively gentle filtering away of the
initial fluctuations is all that applies to a universe dominated by Cold Dark Matter, in
which random velocities are negligible. A CDM universe thus contains fluctuations in
the dark matter on all scales, and structure formation proceeds via hierarchical process
in which nonlinear structures grow via mergers. Examples of CDM would be thermal
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Figure 14. A plot of transfer functions for various adiabatic models,
in which Tk → 1 at small k. A number of possible matter contents are
illustrated: pure baryons; pure CDM; pure HDM. For dark-matter models,
the characteristic wavenumber scales proportional to Ωmh

2, marking
the break scale corresponding to the horizon length at matter-radiation
equality. The scaling for baryonic models does not obey this exactly; the
plotted case corresponds to Ωm = 1, h = 0.5.

relic WIMPs with masses of order 100 GeV, but a more interesting case arises when
thermal relics have lower masses. For collisionless dark matter, perturbations can be
erased simply by free streaming: random particle velocities cause blobs to disperse. At
early times (kT > mc2), the particles will travel at c, and so any perturbation that
has entered the horizon will be damped. This process switches off when the particles
become non-relativistic, so that perturbations are erased up to proper lengthscales of
≃ ct(kT = mc2). This translates to a comoving horizon scale (2ct/a during the radiation
era) at kT = mc2 of

Lfree−stream = 112 (m/eV)−1 Mpc (187)

(in detail, the appropriate figure for neutrinos will be smaller by (4/11)1/3 since they
have a smaller temperature than the photons). A light neutrino-like relic that decouples
while it is relativistic satisfies

Ωνh
2 = m/94.1 eV (188)
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Thus, the damping scale for HDM (Hot Dark Matter) is of order the bend scale. The
existence of galaxies at z ≃ 6 tells us that the coherence scale must have been below
about 100 kpc, so the DM mass must exceed about 1 keV.

A more interesting (and probably practically relevant) case is when the dark
matter is a mixture of hot and cold components. The free-streaming length for the hot
component can therefore be very large, but within range of observations. The dispersal
of HDM fluctuations reduces the CDM growth rate on all scales below Lfree−stream – or,
relative to small scales, there is an enhancement in large-scale power.

(3) Acoustic horizon length. The horizon at matter-radiation equality
also enters in the properties of the baryon component. Since the sound speed is of order
c, the largest scales that can undergo a single acoustic oscillation are of order the horizon
at this time. The transfer function for a pure baryon universe shows large modulations,
reflecting the number of oscillations that have been completed before the universe
becomes matter dominated and the pressure support drops. The lack of such large
modulations in real data is one of the most generic reasons for believing in collisionless
dark matter. Acoustic oscillations persist even when baryons are subdominant, however,
and can be detectable as lower-level modulations in the transfer function. At matter-
radiation equality, the dark matter has a smoothly declining transfer function – but the
baryons have an oscillating transfer function, so the spatial distribution of these two
components is different. Once the sound speed drops, gravity will pull these components
together, and their transfer functions will tend to become identical. But since baryons
are about 5% of the total matter content, the resulting final ‘compromise’ transfer
function has acoustic oscillations imprinted into it at the few per cent level. We will say
more about this later.

(4) Silk damping length. Acoustic oscillations are also damped on small
scales, where the process is called Silk damping: the mean free path of photons due to
scattering by the plasma is non-zero, and so radiation can diffuse out of a perturbation,
convecting the plasma with it. The typical distance of a random walk in terms of the
diffusion coefficient D is x ≃

√
Dt,which gives a damping length of

λS ≃
√

λDH, (189)

the geometric mean of the horizon size and the mean free path. Since λ = 1/(nσT) =
44.3(1 + z)−3(Ωbh

2)−1 proper Gpc, we obtain a comoving damping length of

λS = 16.3 (1 + z)−5/4(Ω2
bΩmh

6)−1/4 Gpc. (190)

This becomes close to the horizon length by the time of last scattering, 1 + z ≃ 1100.
The resulting damping effect can be seen in figure 14 at k ∼ 10kH.

spectrum normalization We now have a full recipe for specifying the matter
power spectrum:

∆2(k) ∝ k3+n T 2
k . (191)
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For completeness, we need to mention how the normalization of the spectrum is to be
specified. Historically, this is done in a slightly awkward way. First suppose we wanted
to consider smoothing the density field by convolution with some window. One simple
case is to imagine averaging within a sphere of radius R. For the effect on the power
spectrum, we need the Fourier transform of this filter:

σ2(R) =

∫

∆2(k) |Wk|2 d ln k; Wk =
3

(kR)3
(sin kR− kR cos kR). (192)

Unlike the power spectrum, σ(R) is monotonic, and the value at any scale is sufficient
to fix the normalization. The traditional choice is to specify σ8, corresponding to
R = 8h−1 Mpc. As a final complication, this measure is normally taken to apply to the
rms in the filtered linear-theory density field. The best current estimate is σ8 ≃ 0.8,
so clearly nonlinear corrections matter in interpreting this number. The virtue of this
convention is that it is then easy to calculate the spectrum normalization at any early
time.

6.5 Relic fluctuations from inflation

overview It was realized very quickly after the invention of inflation that the theory
might also solve the other big puzzle with the initial condition of the universe. When
we study gravitational instability, we will see that the present-day structure requires
that the universe at even the Planck era would have had to possess a finite degree of
inhomogeneity. Inflation suggests an audacious explanation for this structure, which is
that it is an amplified form of the quantum fluctuations that are inevitable when the
universe is sufficiently small. The present standard theory of this process was worked out
by a number of researchers and generally agreed at a historic 1982 Nuffield conference
in Cambridge.

The essence of the idea can be seen in figure 15. This reminds us that de Sitter
space contains an event horizon, in that the comoving distance that particles can
travel between a time t0 and t = ∞ is finite,

rEH =

∫ ∞

t0

c dt

R(t)
; (193)

this is not to be confused with the particle horizon, where the integral would be between
0 and t0. With R ∝ exp(Ht), the proper radius of the horizon is given by R0rEH = c/H.
The exponential expansion literally makes distant regions of space move faster than
light, so that points separated by > c/H can never communicate with each other. If we
imagine expanding the inflaton, φ, using comoving Fourier modes, then there are two
interesting limits for the mode wavelength:

(1) ‘Inside the horizon’: a/k ≪ c/H. Here the de Sitter expansion is negligible, just
as we neglect the modern vacuum energy in the Solar system. The fluctuations
in φ can be calculated exactly as in flat-space quantum field theory.
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r = c / H

Figure 15. The event horizon in de Sitter space. Particles outside the
sphere at r = c/H can never receive light signals from the origin, nor can
an observer at the origin receive information from outside the sphere. The
exponential expansion quickly accelerates any freely falling observers to
the point where their recession from the origin is effectively superluminal.
The wave trains represent the generation of fluctuations in this spacetime.
Waves with λ ≪ c/H effectively occupy flat space, and so undergo the
normal quantum fluctuations for a vacuum state. As these modes (of fixed
comoving wavelength) are expanded to sizes ≫ c/H, causality forces the
quantum fluctuation to become frozen as a classical amplitude that can
seed large-scale structure.

(2) ‘Outside the horizon’: a/k ≫ c/H. Now the mode has a wavelength that exceeds
the scale over which causal influences can operate. Therefore, it must now act as
a ‘frozen’ quantity, which has the character of a classical disturbance. This field
fluctuation can act as the seed for subsequent density fluctuations.

Before going any further, we can immediately note that a natural prediction will
be a spectrum of perturbations that are nearly scale invariant. This means that the
metric fluctuations of spacetime receive equal levels of distortion from each decade of
perturbation wavelength, and may be quantified in terms of the dimensionless power
spectrum, ∆2

Φ, of the Newtonian gravitational potential, Φ (c = 1):

∆2
Φ ≡ d σ2(Φ)

d ln k
= constant ≡ δ2

H
. (194)
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The origin of the term ‘scale-invariant’ is clear: since potential fluctuations modify
spacetime, this is equivalent to saying that spacetime must be a fractal: it has the same
level of deviation from the exact RW form on each level of resolution. It is common
to denote the level of metric fluctuations by δH – the horizon-scale amplitude
(which we know to be about 10−5). The justification for this name is that the potential
perturbation is of the same order as the density fluctuation on the scale of the horizon
at any given time. We can see this from Poisson’s equation in Fourier space:

Φk = −a
2

k2
4πG ρ̄ δk = −(3/2)

a2

k2
ΩmH

2 δk (195)

(where we have taken a w = 0 pressureless equation of state). This says that Φk/c
2 ∼ δk

when the reciprocal of the physical wavenumber is c/H, i.e. is of order the horizon size.

The intuitive argument for scale invariance is that de Sitter space is invariant
under time translation: there is no natural origin of time under exponential expansion.
At a given time, the only length scale in the model is the horizon size c/H, so it is
inevitable that the fluctuations that exist on this scale are the same at all times. By our
causality argument, these metric fluctuations must be copied unchanged to larger scales
as the universe exponentiates, so that the appearance of the universe is independent of
the scale at which it is viewed.

If we accept this rough argument, then the implied density power spectrum is
interesting. because of the relation between potential and density, it must be

∆2(k) ∝ k4, (196)

So the density field is very strongly inhomogeneous on small scales. Another way of
putting this is in terms of a standard power-law notation for the non-dimensionless
spectrum:

P (k) ∝ kn; n = 1. (197)

To get a feeling for what this means, consider the case of a matter distribution built up
by the random placement of particles. It is not hard to show that this corresponds to
white noise: a power spectrum that is independent of scale – i.e. n = 0. Recall the
inverse Fourier relation:

δk(k) =

(

1

L

)3 ∫

δ(x) exp
(

ik · x
)

d3x. (198)

Here, the density field is a sum of spikes at the locations of particles. Because the
placement is random, the contribution of each spike is a complex number of phase
uniformly distributed between 0 and 2π, independent of k. Conversely, the n = 1 ‘scale-
invariant’ spectrum thus represents a density field that is super-uniform on large scales,
but with enhanced small-scale fluctuations.

This n = 1 spectrum was considered a generic possibility long before inflation,
and is also known as the Zeldovich spectrum. It is possible to alter this prediction
of scale invariance only if the expansion is non-exponential; but we have seen that such
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deviations must exist towards the end of inflation. As we will see, it is natural for n to
deviate from unity by a few %, and this is one of the predictions of inflation.

a more detailed treatment We now need to give an outline of the exact
treatment of inflationary fluctuations, which will allow us to calculate both the scale
dependence of the spectrum and the absolute level of fluctuations. This can be a pretty
technical subject, but it is possible to take a simple approach and still give a flavour of
the main results and how they arise.

To anticipate the final answer, the inflationary prediction is of a horizon-scale
amplitude

δH =
H2

2π φ̇
(199)

which can be understood as follows. Imagine that the main effect of fluctuations is to
make different parts of the universe have fields that are perturbed by an amount δφ. In
other words, we are dealing with various copies of the same rolling behaviour φ(t), but
viewed at different times

δt =
δφ

φ̇
. (200)

These universes will then finish inflation at different times, leading to a spread in energy
densities (figure 16). The horizon-scale density amplitude is given by the different
amounts that the universes have expanded following the end of inflation:

δH ≃ H δt =
H

φ̇
δφ =

H

φ̇
× H

2π
=

H2

2π φ̇
. (201)

The δH ≃ H δt argument relies on R(t) ∝ exp(Ht) and that δH is of order the fractional
change in R. We will not attempt here to do better than justify the order of magnitude.

tδ

V

φ

δφ

t

δφ

φ

Figure 16. This plot shows how fluctuations in the scalar field
transform themselves into density fluctuations at the end of inflation.
Different points of the universe inflate from points on the potential
perturbed by a fluctuation δφ, like two balls rolling from different starting
points. Inflation finishes at times separated by δt in time for these two
points, inducing a density fluctuation δ = Hδt.
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The last step uses the crucial input of quantum field theory, which says that the
rms δφ is given by H/2π, and we now sketch the derivation of this result, What we need
to do is consider the equation of motion obeyed by perturbations in the inflaton field.
The basic equation of motion is

φ̈+ 3Hφ̇−∇2φ+ V ′(φ) = 0, (202)

and we seek the corresponding equation for the perturbation δφ obtained by starting
inflation with slightly different values of φ in different places. Suppose this perturbation
takes the form of a comoving plane-wave perturbation of comoving wavenumber k and
amplitude A: δφ = A exp(ik · x−ikt/a). If the slow-roll conditions are also assumed, so
that V ′ may be treated as a constant, then the perturbed field δφ obeys the first-order
perturbation of the equation of motion for the main field:

¨[δφ] + 3H ˙[δφ] + (k/a)2[δφ] = 0, (203)

which is a standard wave equation for a massless field evolving in an expanding universe.

Having seen that the inflaton perturbation behaves in this way, it is not much
work to obtain the quantum fluctuations that result in the field at late times (i.e.
on scales much larger than the de Sitter horizon). First consider the fluctuations in
flat space on scales well inside the horizon. In principle, this requires quantum field
theory, but the vacuum fluctuations in φ can be derived by a simple argument using
the uncertainty principle. First of all, note that the sub-horizon equation of motion is
just that for a simple harmonic oscillator: ¨[δφ] + ω2[δφ] = 0, where ω = k/a. For an
oscillator of mass m and position coordinate q, the rms uncertainty in q in the ground
state is

qrms =

(

h̄

2mω

)1/2

. (204)

This can be derived immediately from the uncertainty principle, which says that the
minimum uncertainty is

〈(δp)2〉〈(δq)2〉 = h̄2/4. (205)

For a classical oscillation with q(t) ∝ eiωt, the momentum is p(t) = mq̇ = iωmq(t).
Quantum uncertainty can be thought of as saying that we lack a knowledge of the
amplitude of the oscillator, but in any case the amplitudes in momentum and coordinate
must be related by prms = mωqrms. The uncertainty principle therefore says

m2ω2q4rms = h̄2/4, (206)

which yields the required result.

For scalar field fluctuations, our ‘coordinate’ q is just the field δφ, the oscillator
frequency is ω = k/a, and we now revert to h̄ = 1. What is the analogue of the mass of
the oscillator in this case? Recall that a Lagrangian, L, has a momentum p = ∂L/∂q̇
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corresponding to each coordinate. For the present application, the kinetic part of the
Lagrangian density is

Lkinetic = a3φ̇2/2, (207)

and the ‘momentum’ conjugate to φ is p = a3φ̇. In the current case, p is a momentum
density , since L is a Lagrangian density; we should therefore multiply p by a comoving
volume V , so the analogue of the SHO mass is m = a3V .

The uncertainty principle therefore gives us the variance of the zero-point
fluctuations in δφ as

〈(δφ)2〉 =
(

2 (a3V ) (k/a)
)−1

, (208)

so we adopt an rms field amplitude from quantum fluctuations of

δφ = (a3V )−1/2 (2k/a)−1/2 e−ikt/a. (209)

This is the correct expression that results from a full treatment in quantum field theory.

With this boundary condition, it straightforward to check by substitution that
the following expression satisfies the evolution equation:

δφ = (a3V )−1/2 (2k/a)−1/2 eik/aH (1 + iaH/k) (210)

(remember that H is a constant, so that (d/dt)[aH] = Hȧ = aH2 etc.). At early
times, when the horizon is much larger than the wavelength, aH/k ≪ 1, and so this
expression is the flat-space result, except that the time dependence looks a little odd,
being exp(ik/aH). However, since (d/dt)[k/aH] = −k/a, we see that the oscillatory
term has a leading dependence on t of the desired −kt/a form.

At the opposite extreme, aH/k ≫ 1, the squared fluctuation amplitude becomes
frozen out at the value

〈0| |φk|2 |0〉 =
H2

2k3V
, (211)

where we have emphasised that this is the vacuum expectation value. The fluctuations
in φ depend on k in such a way that the fluctuations per decade are constant:

d (δφ)2

d ln k
=

4πk3V

(2π)3
〈0| |φk|2 |0〉 =

(

H

2π

)2

(212)

(the factor V/(2π)3 comes from the density of states in the Fourier transform, and
cancels the 1/V in the field variance; 4πk2 dk = 4πk3 d ln k comes from the k-space
volume element).

This completes the argument. The initial quantum zero-point fluctuations in
the field have been transcribed to a constant classical fluctuation that can eventually
manifest itself as large-scale structure. The rms value of fluctuations in φ can be used
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as above to deduce the power spectrum of mass fluctuations well after inflation is over.
In terms of the variance per ln k in potential perturbations, the answer is

δ2
H
≡ ∆2

Φ(k) =
H4

(2πφ̇)2

H2 =
8π

3

V

m2
P

3Hφ̇ = −V ′,

(213)

where we have also written once again the slow-roll condition and the corresponding
relation between H and V , since manipulation of these three equations is often required
in derivations.

A few other comments are in order. These perturbations should be Gaussian
and adiabatic in nature. A Gaussian density field is one for which the joint probability
distribution of the density at any given number of points is a multivariate Gaussian.
The easiest way for this to arise in practice is for the density field to be constructed as a
superposition of Fourier modes with independent random phases; the Gaussian property
then follows from the central limit theorem. This holds in the case of inflation, since
modes of different wavelength behave independently and have independent quantum
fluctuations. Adiabatic perturbations are ones where the matter and photon number
densities are perturbed equally, which is the natural outcome of post-inflation reheating
(although not inevitable in multi-field models).

tensor perturbations Later in the course, we will compare the predictions of
this inflationary apparatus with observations of the fluctuating density field of the
contemporary universe. It should be emphasised again just what an audacious idea
this is: that all the structure around us was seeded by quantum fluctuations while
the universe was of subnuclear scale. It would be nice if we could verify this radical
assumption, and there is one basic test: if the idea of quantum fluctuations is correct,
it should apply to every field that was present in the early universe. In particular, it
should apply to the gravitational field. This corresponds to metric perturbations in the
form of a tensor hµν , whose coefficients have some typical amplitude h (not the Hubble
parameter). This spatial strain is what is measured by gravity-wave telescopes
such as LIGO: the separation between a pair of freely-suspended masses changes by a
fractional amount of order h as the wave passes. These experiments can be fabulously
precise, with a current sensitivity of around h = 10−21.

What value of h does inflation predict? For scalar perturbations, small-scale
quantum fluctuations lead to an amplitude δφ = H/2π on horizon exit, which transforms
to a metric fluctuation δH = Hδφ/φ̇. Tensor modes behave similarly – except that h
must be dimensionless, whereas φ has dimensions of mass. On dimensional grounds,
then, the formula for the tensor fluctuations is plausible:

hrms ∼ H/mP. (214)

But unlike fluctuations in the inflaton, the tensor fluctuation do not affect the progress of
inflation: once generated, they play no further part in events and survive to the present

70



day. Detection of these primordial tensor perturbations would not only give confidence
in the basic inflationary picture, but would measure rather directly the energy scale of
inflation.

inflaton coupling The calculation of density inhomogeneities sets an important
limit on the inflation potential, which is that it is very weakly self-coupled. To see what
this means, write a power-law potential as V (φ) = λm4

P
(φ/mP)

α, for which inflation
will only proceed while φ≫ mP. To verify this, calculate the inflationary parameter

ǫ =
m2

P

16π
(V ′/V )2 =

m2
P
α2

16πφ2
, (215)

so ǫ≪ 1 requires φ≫ mP. Now consider the amplitude of inflationary fluctuations:

δ2
H
=

H4

(2πφ̇)2
=

128π

3

(

V 3

m6
P
V ′2

)

=
128π

3α2
λ(φ/mP)

α+2. (216)

The observed δH ∼ 10−5, plus the constraint φ≫ mP, therefore requires

λ≪ 10−12. (217)

For a mass-like potential V = m2φ2, m2 = λmP in the above notation, so our constraint
is

m≪ 10−6mP. (218)

Thus the inflaton has to be a light particle and/or the self-coupling λ has to be small.
This is one way to see that the only known scalar field (the Higgs field) cannot be the
inflaton: at large φ the Higgs potential is dominated by a λφ4 dependence with λ of
order unity.

These constraints appear to suggest a defect in inflation, in that we should be
able to use the theory to derive δH ∼ 10−5. The amplitude of δH is one of the most
important numbers in cosmology, and it is vital to know whether there is a simple
explanation for its magnitude. One way to view this is to express the horizon-scale
amplitude as

δH ∼ V 1/2

m2
P
ǫ1/2

. (219)

We have argued that inflation will end with ǫ of order unity; if the potential were to
have the characteristic value V ∼ E4

GUT
then this would give the simple result

δH ∼
(

mGUT

mP

)2

. (220)
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tilt Finally, deviations from exact exponential expansion must exist at the end of
inflation, and the corresponding change in the fluctuation power spectrum is a potential
test of inflation. Define the tilt of the fluctuation spectrum as follows:

tilt ≡ 1− n ≡ −d ln δ
2
H

d ln k
. (221)

We then want to express the tilt in terms of parameters of the inflationary potential, ǫ
and η. These are of order unity when inflation terminates; ǫ and η must therefore be
evaluated when the observed universe left the horizon, recalling that we only observe
the last 60-odd e-foldings of inflation. The way to introduce scale dependence is to write
the condition for a mode of given comoving wavenumber to cross the de Sitter horizon,

a/k = H−1. (222)

Since H is nearly constant during the inflationary evolution, we can replace d/d ln k by
d ln a, and use the slow-roll condition to obtain

d

d ln k
= a

d

da
=

φ̇

H

d

dφ
= −m

2
P

8π

V ′

V

d

dφ
. (223)

We can now work out the tilt, since the horizon-scale amplitude is

δ2
H
=

H4

(2πφ̇)2
=

128π

3

(

V 3

m6
P
V ′2

)

, (224)

and derivatives of V can be expressed in terms of the dimensionless parameters ǫ and
η. The tilt of the density perturbation spectrum is thus predicted to be

1− n = 6ǫ− 2η (225)

For most models in which the potential is a smooth polynomial-like function,
|η| ≃ |ǫ|. Since ǫ has the larger coefficient and is positive by definition, the simplest
inflation models tend to predict that the spectrum of scalar perturbations should be
slightly tilted, in the sense that n is slightly less than unity.

It is interesting to put flesh on the bones of this general expression and evaluate
the tilt for some specific inflationary models. This is easy in the case of power-law
inflation with a ∝ tp because the inflation parameters are constant: ǫ = η/2 = 1/p, so
that the tilt here is always

1− n = 2/p (226)

In general, however, the inflation derivatives have to be evaluated explicitly on the
largest scales, 60 e-foldings prior to the end of inflation, so that we need to solve

60 =

∫

H dt =
8π

m2
P

∫ φ

φend

V

V ′
dφ. (227)
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A better motivated choice than power-law inflation would be a power-law potential
V (φ) ∝ φα; many chaotic inflation models concentrate on α = 2 (mass-like term) or
α = 4 (highest renormalizable power). Here, ǫ = m2

P
α2/(16πφ2), η = ǫ × 2(α − 1)/α,

and

60 =
8π

m2
P

∫ φ

φend

φ

α
dφ =

4π

m2
P
α
(φ2 − φ2end). (228)

It is easy to see that φend ≪ φ and that ǫ = α/240, leading finally to

1− n = (2 + α)/120. (229)

The predictions of simple chaotic inflation are thus very close to scale invariance in
practice: n = 0.97 for α = 2 and n = 0.95 for α = 4. However, such a tilt has a
significant effect over the several decades in k from CMB anisotropy measurements to
small-scale galaxy clustering. These results are in some sense the default inflationary
predictions: exact scale invariance would be surprising, as would large amounts of tilt.
Either observation would indicate that the potential must have a more complicated
structure, or that the inflationary framework is not correct.

6.6 Stochastic eternal inflation

These fluctuations in the scalar field can affect the progress of inflation itself. They
can be thought of as adding a random-walk element to the classical rolling of the scalar
field down the trough defined by V (φ). In cases where φ is too close to the origin for
inflation to persist for sufficiently long, it is possible for the quantum fluctuations to
push φ further out – creating further inflation in a self-sustaining process. This is the
concept of stochastic inflation.

Consider the scalar field at a given point in the inflationary universe. Each e-
folding of the expansion produces new classical fluctuations, which add incoherently to
those previously present. If the field is sufficiently far from the origin in a polynomial
potential, these fluctuations produce a random walk of φ(t) that overwhelms the classical
trajectory in which φ tries to roll down the potential, as follows. The classical amplitude
from quantum fluctuations is δφ = H/2π, and a new disturbance of the same rms will
be added for every ∆t = 1/H. The slow-rolling equation says that the trajectory
is φ̇ = −V ′/3H; we also have H2 = 8πV/3m2

P
, so that the classical change in φ is

∆φ = −m2
P
V ′/8πV in a time ∆t = 1/H. Consider V = λ|φ|n/(nmn−4

P
), for which

these two changes in φ will be equal at φ ∼ φ∗ = mP/λ
1/(n+2). For smaller φ, the

quantum fluctuations will have a negligible effect on the classical trajectory; for larger
φ, the equation of motion will become stochastic. The resulting random walk will
send some parts of the universe to ever larger values of φ, so inflation never entirely
ends. This eternal inflation is the basis for the concept of the inflationary
multiverse: different widely-separated parts of the universe will inflate by different
amounts, producing in effect separate universes with distinct formation histories.
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7 Structure formation – II

The equations of motion are nonlinear, and we have only solved them in the limit
of linear perturbations. We now discuss evolution beyond the linear regime, first
considering the full numerical solution of the equations of motion, and then a key
analytic approximation by which the ‘exact’ results can be understood.

n-body models The exact evolution of the density field is usually performed by
means of an N-body simulation, in which the density field is represented by the
sum of a set of fictitious discrete particles. We need to solve the equations of motion for
each particle, as it moves in the gravitational field due to all the other particles. Using
comoving units for length and velocity (v = au), we have previously seen the equation
of motion

d

dt
u = −2

ȧ

a
u− 1

a2
∇∇∇∇∇∇∇∇∇∇∇∇∇Φ, (230)

where Φ is the Newtonian gravitational potential due to density perturbations. The time
derivative is already in the required form of the convective time derivative observed by
a particle, rather than the partial ∂/∂t.

In outline, this is straightforward to solve, given some initial positions and
velocities. Defining some timestep dt, particles are moved according to dx = u dt,
and their velocities updated according to du = u̇ dt, with u̇ given by the equation of
motion (in practice, more sophisticated time integration schemes are used). The hard
part is finding the gravitational force, since this involves summation over (N − 1) other
particles each time we need a force for one particle. All the craft in the field involves
finding clever ways in which all the forces can be evaluated in less than the raw O(N2)
computations per timestep. We will have to omit the details of this, unfortunately, but
one obvious way of proceeding is to solve Poisson’s equation on a mesh using a Fast
Fourier Transform. This can convert the O(N2) time scaling to O(N lnN), which is a
qualitative difference given that N can be as large as 1010.

These non-linear effects boost the amplitude of the power spectrum at small
physical scales (large k scales) as can be seen in Figure 17 . For cosmological observations
we need to understand these non-linear effects to high precision. This is one of the issues
facing modern day cosmology and non-linear effects can only be calculated through large
scale suites of HPC N-body simulations.

Computing lives by the ‘garbage in, garbage out’ rule, so how are the
initial conditions in the simulation set? This can be understood by thinking
of density fluctuations in Lagrangian terms (also known as the Zeldovich
approximation). The proper coordinate of a given particle can be written as

x(t) = a(t) (q+ f (q, t)) , (231)

74



Figure 17. ΛCDM power spectrum normalised by σ8 = 0.9. The
linear power spectrum is show solid and the non-linear power spectrum is
shown dashed using the fitting formula from Smith et al. 2003.

where q is the usual comoving position, and the displacement field f (q, t) tends
to zero at t = 0. The comoving peculiar velocity is just the time derivative of this
displacement:

u =
∂f

∂t
(232)

(partial time derivative because each particle is labelled by an unchanging value of q –
this is what is meant by a Lagrangian coordinate).

By conservation of particles, the density at a given time is just the Jacobian
determinant between q and x:

ρ / ρ̄ =

∣

∣

∣

∣

∂q

∂x/a

∣

∣

∣

∣

. (233)

When the displacement is small, this is just

ρ / ρ̄ = 1−∇∇∇∇∇∇∇∇∇∇∇∇∇ · f (q, t), (234)

so the linear density perturbation δ is just (minus) the divergence of the displacement
field. All this can be handled quite simply if we define a displacement potential:

f = −∇∇∇∇∇∇∇∇∇∇∇∇∇ψ(q), (235)
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from which we have δ = ∇2ψ in the linear regime. The displacement potential ψ is
therefore proportional to the gravitational potential, Φ. These equations are easily
manipulated in Fourier space: given the amplitudes of the Fourier modes, δk, we can
obtain the potential

ψk = −δk/k2, (236)

and hence the displacement and velocity

fk = ikψk

uk = ik ψ̇k.
(237)

Thus, given the density power spectrum to specify |δk| and the assumption of random
phases, we can set up a field of consistent small displacements and consistent velocities.
These are applied to a uniform particle ‘load’, and then integrated forward into the
nonlinear regime.

press–schechter and the halo mass function N -body models can yield
evolved density fields that are nearly exact solutions to the equations of motion, but
working out what the results mean is then more a question of data analysis than of
deep insight. Where possible, it is important to have analytic models that guide the
interpretation of the numerical results. Press & Schechter (1974) is a key example of a
theory which produces results that only slightly differ from full numerical simulations.

Press-Schechter theory assumes that if we smooth the linear density perturba-
tions on some mass scale M , then the fraction of space in which the smoothed density
field exceeds some critical threshold δc (the critical overdensity for collapse) is in
collapsed objects of mass greater than M . What relevance does the spherical model
have to the real world? Despite the lack of spherical symmetry, we can still use the
model to argue that nonlinear collapse will occur whenever we have a region within
which the mean linear-theory density contrast is of order unity. If the density field is
Gaussian, the probability that a given point lies in a region with δ > δc is

p(δ > δc | R) =
1√

2π σ(R)

∫ ∞

δc

exp
(

−δ2/2σ2(R)
)

dδ, (238)

where σ(R) is the linear rms in the filtered version of δ. The PS argument now takes
this probability to be proportional to the probability that a given point has ever been
part of a collapsed object of scale > R. This is really assuming that the only objects
that exist at a given epoch are those that have only just reached the δ = δc collapse
threshold; if a point has δ > δc for a given R, then it will have δ = δc when filtered
on some larger scale and will be counted as an object of the larger scale. The problem
with this argument is that half the mass remains unaccounted for: PS therefore simply
multiplying the probability by a factor 2. This fudge can be given some justification,
but we just accept it for now. The fraction of the universe condensed into objects with
mass > M can then be written in the universal form

F (> M) =

√

2

π

∫ ∞

νc

exp(−ν2/2) dν, (239)
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where νc = δc/σ(M) is the threshold in units of the rms density fluctuation and M is
the mass contained in a sphere of comoving radius R in a homogeneous universe

M =
4π

3
ρ̄ R3. (240)

This is the linear-theory view, before the object has collapsed. We define the mass
function f(M) where f(M) dM is the comoving number density of objects in the range
dM . The probability of a point in space forming as mass between M and M + dM is
dF/dM , therefore;

Mf(M)/ρ0 = |dF/dM |, (241)

where ρ0 is the total comoving density. We can write this result in terms of the
multiplicity function, M2f(M)/ρ0,

M2f(M)

ρ0
=

dF

d lnM
=

∣

∣

∣

∣

d lnσ

d lnM

∣

∣

∣

∣

√

2

π
ν exp

(

−ν
2

2

)

. (242)

which is the fraction of the mass carried by objects in a unit range of lnM .

Remarkably, given the dubious assumptions, this expression matches very well
to what is found in direct N-body calculations, when these are analysed in order to
pick out candidate haloes: connected groups of particles with density about 200 times
the mean. The PS form is imperfect in detail, but the idea of a mass function that is
universal in terms of ν seems to hold, and a good approximation is

F (> ν) = (1 + a νb)−1 exp(−c ν2), (243)

where (a, b, c) = (1.529, 0.704, 0.412). Empirically, one can use δc = 1.686 independent
of the density parameter (see Section 15.8 in Peacock 1999 for the spherical model
argument for the value of δc). A plot of the mass function according to this prescription
is given in figure 18, assuming what we believe to be the best values for the cosmological
parameters. This shows that the Press-Schechter formula captures the main features of
the evolution, even though it is inaccurate in detail. We see that the richest clusters of
galaxies, with M ≃ 1015 h−1M⊙, are just coming into existence now, whereas at z = 5
even a halo with the mass of the Milky Way, M ≃ 1012 h−1M⊙ was similarly rare. It
can be seen that the abundance of low-mass haloes declines with redshift, reflecting
their destruction in the merging processes that build up the large haloes.
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Figure 18. The mass function in the form of the multiplicity
function: fraction of mass in the universe found in virialized haloes per
unit range in lnM . The solid lines show a fitting formula to N -body data
and the dashed lines contrast the original Press-Schechter formula.

7.1 A recipe for galaxy formation

Since the appreciation in the 1970s that galaxies seemed to be embedded in haloes of
dark matter, it has been clear that one should be able to construct an approximate
theory for the assembly of galaxies based on the assumption that everything is
dominated by the dark matter. Therefore, once we understand the history of the
haloes, we should be able to make plausible guesses about how the baryonic material
will behave. Over the years, this route has been followed to the point where there now
exists an elaborate apparatus known as semianalytic galaxy formation. This
is not yet a fully satisfactory theory, in that it is not able to make robust predictions
of the properties that the galaxy population should have. However, it has succeeded
in illuminating the main issues that need to be understood in a complete theory. In
essence, semianalytic models include the following elements:

(1)Merger trees. A halo that exists at a given time will have been constructed
by the merging of smaller fragments over time. We need to be able to predict this history.

(2) Fate of subhaloes. When haloes merge, they do not instantly lose their
identity. Their cores survive as distinct subhaloes for some time. In group/cluster
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Figure 19. An example of a merger tree for a halo of M ≃ 1013M⊙

at z = 0, from Helly et al. (2002). The size of circle is proportional to
halo mass, and the leftmost panel shows the fraction of the total mass
in resolved progenitors (solid) and the mass of the largest progenitor
(dashed).

scale haloes, these will mark the locations of the galaxies. In general, subhaloes will
eventually merge within the parent halo, and sink to the centre. Thus there is always a
tendency to have a dominant central galaxy (e.g. the Milky Way is surrounded by the
much smaller Magellanic Cloud dwarfs).

(3) Accounting of gas and stars. The first generation of haloes is assumed
to start life with gas distributed along with the dark matter in the universal ratio
Ωb/Ωdm. From the density of the gas, the cooling rate can be calculated. Whatever gas
reaches a temperature below 104 K is deemed to be a reservoir of cold gas suitable for
star formation. Some empirical relation based on the amount and density of this gas is
then used to predict a star-formation rate. When haloes merge, their contents of stars,
cold gas, and hot gas are added.

(4) Feedback. As we will show below, the above recipe fails to match
observation, as it predicts that stars should form most efficiently in the smallest galaxies
– so that a system of the size of the Milky Way should be just a collection of globular
clusters, rather than predominately a giant gaseous disk. Therefore, the critical (and
so far unsolved) problem in galaxy formation is to make gas cool less efficiently. The
idea here is that energy is put back into the hot gas as a result of the nonlinear events
that happen inside galaxies. These are principally of two kinds: supernova explosions
and nuclear activity around a central black hole.
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virial temperature There is no time here to dig very deeply into the component
parts of this recipe, but a few points are worth making. First consider the characteristic
density of a virialized halo. We have argued that this is some multiple fc ≃ 200 of the
background density at virialization (or ‘collapse’):

ρc = fc ρ0 (1 + zc)
3. (244)

The virialized potential energy for constant density is 3GM2/(5r), where the radius
satisfies 4πρcr

3/3 = M . This energy must equal 3MkT/(µmp), where µ = 0.59 for a
plasma with 75% hydrogen by mass. Hence, using ρ0 = 2.78 × 1011Ωmh

2M⊙Mpc−3,
we obtain the virial temperature:

Tvirial/K = 105.1(M/1012M⊙)
2/3 (fcΩmh

2)1/3 (1 + zc). (245)

This is an illuminating expression. It tells us that the most massive systems forming
today, with M ≃ 1015M⊙, will have temperatures of 107 – 108 K. The intergalactic
medium in clusters is thus very hot, and emits in X-rays. It also cools very inefficiently,
since such hot plasmas emit only bremsstrahlung. Conversely, pregalactic systems with
M <

∼ 109M⊙ at z ≃ 10 have a virial temperature that is barely at the level of 104 K
required for ionization. Their gas is thus predominately neutral, and should form stars
with maximum efficiency. This is the cooling paradox referred to above.

But the same formula allows us to see how to escape from the paradox. The
virial temperature is equivalent to a velocity dispersion, which is essentially the velocity
at which particles orbit in the dark-matter potential well. This velocity therefore also
gives the order of magnitude of the escape velocity for the system. Haloes with a virial
temperature of only ∼ 104 K thus constitute very shallow potential wells and will lose
any of their gas that becomes heated to >∼ 105 K. This is liable to happen as soon as any
supernovae from the first generation of star formation explode. For type II supernovae
associated with massive stars, this can be virtually instantaneous (<∼ 107 years). Star
formation in these early dwarf galaxies might well be expected to be self-quenching.
Indications that this process did happen can be found when measuring HI rotation
curves of dwarfs: the typical baryon fraction is only about 1% (as opposed to something
close to the global 20% in clusters).

the spherical model N -body models can yield evolved density fields that are
nearly exact solutions to the equations of motion, but working out what the results
mean is then more a question of data analysis than of deep insight. Where possible,
it is important to have analytic models that guide the interpretation of the numerical
results. The most important model of this sort is the spherical density perturbation,
which can be analysed immediately using the tools developed for the Friedmann models,
since Birkhoff’s theorem tells us that such a perturbation behaves in exactly the same
way as part of a closed universe. The equations of motion are the same as for the scale
factor, and we can therefore write down the cycloid solution immediately. For a
matter-dominated universe, the relation between the proper radius of the sphere and
time is

r = A(1− cos θ)

t = B(θ − sin θ).
(246)
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It is easy to eliminate θ to obtain r̈ = −GM/r2, and the relation A3 = GMB2 (use
e.g. ṙ = (dr/dθ)/((dt/dθ), which gives ṙ = [A/B] sin θ/[1 − cos θ]). Expanding these
relations up to order θ5 gives r(t) for small t:

r ≃ A

2

(

6t

B

)2/3
[

1− 1

20

(

6t

B

)2/3
]

, (247)

and we can identify the density perturbation within the sphere:

δ ≃ 3

20

(

6t

B

)2/3

. (248)

This all agrees with what we knew already: at early times the sphere expands with the
a ∝ t2/3 Hubble flow and density perturbations grow proportional to a.

We can now see how linear theory breaks down as the perturbation evolves.
There are three interesting epochs in the final stages of its development, which we can
read directly from the above solutions. Here, to keep things simple, we compare only
with linear theory for an Ω = 1 background.

(1) Turnround. The sphere breaks away from the general expansion and reaches a
maximum radius at θ = π, t = πB. At this point, the true density enhancement
with respect to the background is just [A(6t/B)2/3/2]3/r3 = 9π2/16 ≃ 5.55.

(2) Collapse. If only gravity operates, then the sphere will collapse to a singularity
at θ = 2π.

(3) Virialization. Clearly, collapse to a point is highly idealized. Consider the
time at which the sphere has collapsed by a factor 2 from maximum expansion
(θ = 3π/2). At this point, it has kinetic energy K related to potential energy
V by V = −2K. This is the condition for equilibrium, according to the virial
theorem. Conventionally, it is assumed that this stable virialized radius is
eventually achieved only at the collapse time, at which point the density contrast
is ρ/ρ̄ = (6π)2/2 ≃ 178 and δlin ≃ 1.686.

These calculations are the basis for a common ‘rule of thumb’, whereby one assumes
that linear theory applies until δlin is equal to some δc a little greater than unity, at
which point virialization is deemed to have occurred. Although the above only applies
for Ω = 1, analogous results can be worked out from the full δlin(z,Ω) and t(z,Ω)
relations. These indicate that δlin ≃ 1 is a good criterion for collapse for any value
of Ω likely to be of practical relevance. The density contrast at virialization tends
to be higher in low-density universes, where the faster expansion means that, by the
time a perturbation has turned round and collapsed to its final radius, a larger density
contrast has been produced. For real non-spherical systems, it is not clear that this
effect is meaningful, and in practice a fixed density contrast of around 200 is used to
define the virial radius that marks the boundary of an object.
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The spherical model thus gives some insight into why the end result of a nonlinear
N -body calculation is dominated by nearly spherical ‘haloes’ of dark matter. These
systems can be of varying mass, depending on the size of the region that exceeds the
threshold density contrast, spanning the range from single galaxies to the most massive
clusters of galaxies. Galaxy formation is thus simplified to the task of understanding the
fate of gas within these haloes, although it is complicated by the fact that halo growth
proceeds via merging. Several galaxies may form at high redshift within separate low-
mass haloes, but these then merge into a single group with a common halo – and
subhaloes within it, which are clumps of dark-matter substructure that mark the
residue of the haloes in which the galaxies formed, and in which they continue to reside.

Figure 20. The decomposition of the mass power spectrum according
to the halo model, for the flat Ωm = 0.3, Γ = 0.2, σ8 = 0.8 case. The
dashed line shows linear theory, and the open circles show the predicted
1-halo contribution. Adding in linear theory to produce the correct large-
scale clustering yields the solid points. The full lines show the contribution
of different mass ranges to the 1-halo term: bins of width a factor 10 in
width, starting at 1010 − 1011h−1M⊙ and ending at 1015 − 1016h−1M⊙.
The more massive haloes have larger virial radii and hence filter the power
spectrum on progressively larger scales. The majority of the quasilinear
power is contributed by the haloes near the peak in the mass function at
1014 − 1015h−1M⊙.
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haloes and clustering The existence of dark-matter haloes gives an immediate
insight into the nonlinear properties of the dark-matter density field, via an
approximation known as the halo model. Start by distributing point seeds
throughout the universe with number density n, in which case the power spectrum
of the resulting density field is just shot noise:

∆2(k) =
4π

n

(

k

2π

)3

. (249)

The density field for a distribution of clumps is produced by convolution of the initial
field of delta-functions, so the power spectrum is simply modified by the squared Fourier
transform of the clump density profile:

∆2(k) =
4π

n

(

k

2π

)3

|Wk|2, (250)

where the ‘window function’ cuts off the power at k ∼ 1/rv, depending on the virial
radius (which we have seen is an increasing function of mass). Integrating over the halo
mass function, we get

∆2
halo(k) = 4π

(

k

2π

)3 ∫
M2 |Wk(M)|2 f(M) dM
[ ∫

M f(M) dM
]2 . (251)

The normalization term
∫

M f(M) dM just gives the total background density, ρb, since
f(M) dM is the number density of haloes in the mass range dM .

So far, we have ignored any spatial correlations in the halo positions. A simple
guess for amending this is to add the linear power spectrum to the power generated by
the halo structure:

∆2
tot = ∆2

halo +∆2
linear. (252)

The justification for this is that the extra small-scale power introduced by nonlinear
evolution is associated with the internal structure of the haloes. In practice, this
model works extremely well, giving a good description of the power spectrum on all
scales (see figure 21). This is a novel way of looking at the features in the nonlinear
spectrum, particularly the steep rise between k ≃ 0.5hMpc−1 and k ≃ 5hMpc−1, and
the flattening on smaller scales.

galaxy bias This model can be extended readily by allowing for the fact that
different classes of galaxy will be associated with different mass haloes. Most simply,
haloes below a certain mass will contain insufficient mass to constitute even a single
galaxy; beyond this, the efficiency of galaxy formation will depend in a complex an
nonlinear way on halo enviroment. All this can be encoded in the halo occupation
number, N(M). This mass-dependent weighting is especially important, since the
amplitude of apparent density fluctuations depends on halo mass, with the most massive
haloes having the highest amplitude.
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Figure 21. The high-peak bias model. If we decompose a density
field into a fluctuating component on galaxy scales, together with a long-
wavelength ‘swell’ (shown dashed), then those regions of density that
lie above a threshold in density of ν times the rms will be strongly
clustered. If proto-objects are presumed to form at the sites of these
high peaks (shaded, and indicated by arrows), then this is a population
with Lagrangian bias – i.e. a non-uniform spatial distribution even prior
to dynamical evolution of the density field.

We now consider the central mechanism of biased clustering, in which a rare
high density fluctuation, corresponding to a massive object, collapses sooner if it lies
in a region of large-scale overdensity. This ‘helping hand’ from the long-wavelength
modes means that overdense regions contain an enhanced abundance of massive objects
with respect to the mean, so that these systems display enhanced clustering. The basic
mechanism can be immediately understood via the diagram in figure 21; it was first
clearly analysed by Kaiser (1984) in the context of rich clusters of galaxies.

The key ingredient of this analysis is the mass function of dark-matter haloes.
The universe fragments into virialized systems such that f(M) dM is the number density
of haloes in the mass range dM . The simplest analyses of the mass function rest on the
concept of a density threshold: collapse to a virialized object is deemed to have occurred
where linear-theory δ averaged over a sphere containing mass M reaches some critical
value δc. Generally, we shall assume the value δc = 1.686 appropriate for spherical
collapse in an Einstein–de Sitter universe. Now imagine that this situation is perturbed,
by adding some constant shift ǫ to the density perturbations over some large region. The
effect of this is to perturb the threshold: fluctuations now only need to reach δ = δc − ǫ
in order to achieve collapse. Of course, the field ǫ can hardly be imposed by hand;
instead, we make the peak-background split, in which δ is mentally decomposed
into a small-scale and a large-scale component – which we identify with ǫ. The scale
above which the large-scale

Without going into details, it should be obvious that the abundance of high-mass
haloes is highly sensitive to any change of the threshold: the probability of exceeding
the δ > δc threshold is dominated by a Gaussian factor exp(−ν2/2), where ν ≡ δc/σ(M)
and σ is the fractional rms in the density field filtered on a mass scaleM ; thus high-mass
objects correspond to large values of ν, and the density field is dominated by typical
haloes with ν ∼ 1. The result is a mass-dependent linear bias parameter, where

δg = b(M)δ, (253)
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and b(M) increases ∝ ν2 at large mass. Once we have averaged over a distribution of
galaxy occupation numbers, the overall bias parameter can vary from less than unity
for dwarf galaxies to 2 or more for massive ellipticals. Thus, in probing primordial
density fluctuations using galaxy surveys, the bias is often treated as an unknown free
parameter.
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8 Gravitational lensing

Gravitational lensing is the phenomenon whereby a ray of light experiences a curvature
of its path, when passing through a gravitational field from nearby mass concentrations.
This can be rigorously described from Einstein’s theory of relativity, whereby the light
propagates along null geodesics, as described by the perturbed space time Robertson-
Walker metric. In most astrophysical situations however a more simple approximate
description, called gravitational lens theory, is permitted. In this chapter we will derive
some of the basics of gravitational lens theory, which we will then build upon in the
weak lensing regime.

8.1 The lens equation

Figure 22 sketches a typical gravitational lensing system where the thin lens at distance
Dd from the observer, perturbs the path of a light ray from a luminous source at distance
Ds from the observer, where the distance between the lens plane and source plane is
Dds, and all distances are angular diameter distances. In the absence of the lens, the
observer would see the source at position βββ. Instead, the lens deflection by angle α̂̂α̂α,
causes the observer to see the source image at position θθθ, where all angles, in typical
lensing situations, are very small. From figure 22 we see

θθθDs = βββDs + α̂̂α̂αDds. (254)

Defining the reduced deflection angle ααα = α̂̂α̂αDds/Ds, the lens equation is given by

βββ = θθθ − ααα. (255)

the deflection angle α and lensing potential ψ The deflection angle
can be determined by considering the line integral of the gravitational acceleration
perpendicular to the light path a⊥.

α̂̂α̂α =
2

c2

∫

a⊥dl, (256)

where acceleration is caused by the gravitational potential of the lens Φ such that
a⊥ = ∇ξΦ, and hence

α̂̂α̂α =
2

c2

∫

∇ξΦdl. (257)

We can define a lensing potential such that

θθθ − βββ = ∇θψ(θθθ) (258)
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Figure 22. Sketch of a gravitational lensing system, taken from
Bartelmann & Schneider 2001.

Noting that ξξξ = Ddθθθ the lensing potential can be the related to the gravitational
potential;

ψ =
Dds

DdDs

2

c2

∫

Φ(ξξξ, l)dl. (259)

a point mass lens and the born approximation From Einstein’s theory
of General Relativity, it can be shown that a light ray passing within distance ξ of
a point lens of mass M , is deflected by an angle α̂ given by

α̂ =
4GM

c2 ξ
, (260)
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for impact parameters ξ ≫ RS ≡ 2GM c−2. For a mass distribution ρ(r), if the
gravitational field is weak, then we can approximate the deflection angle produced by
the total mass distribution, as the sum of deflection angles produced by a series of point
masses. We can divide our mass distribution in cells of volume dV , with each cell acting
as a point mass lens, with mass dm = ρ(r)dV . A light ray propagating along the line
of sight (l) with position (ξξξ, l) where ξξξ is a two dimensional vector in the lens plane, is
allowed to pass through the mass distribution. At the mass element dm with position
(ξξξ′, l′), the light ray has impact parameter ξ − ξξ − ξξ − ξ′, if we assume that the deflected light
ray can be approximated as a straight line in the neighbourhood of the deflecting mass.
This assumption corresponds to the Born approximation in atomic and nuclear physics
and is valid as long as the deviation of the actual light ray from a straight line within
the mass distribution is small compared to the scale on which the mass distribution
changes significantly

The total deflection angle is the sum of each small deflection

α̂̂α̂α(ξξξ) =
4G

c2

∫

d2ξ′
∫

dl′ ρ(ξ′1, ξ
′
2, l

′)
ξξξ − ξξξ′

|ξξξ − ξξξ′|2
. (261)

Defining the surface mass density of the lens plane

Σ(ξξξ) ≡
∫

dl ρ(ξ1, ξ2, l), (262)

we find the two dimensional vector of the deflection angle

α̂̂α̂α(ξξξ) =
4G

c2

∫

d2ξ′Σ(ξξξ′)
ξξξ − ξ′ξ′ξ′

|ξξξ − ξξξ′|2
. (263)

the axially symmetric lens In the special case of a axially symmetric lens
characterized by Σ(ξξξ) = Σ(|ξξξ|), we can choose the origin as the centre of symmetry.
The deflection angle is then collinear to ξξξ and one obtains

α̂αα(ξξξ) =
ξξξ

|ξξξ|2
4G

c2
2π

∫

dξ′ ξ′ Σ(ξ′). (264)

For a constant surface mass density, and rewriting in terms of the reduced deflection
angle and the lens parameters, ξξξ = Dd θθθ

ααα(θθθ) =
Σ

Σcr
θθθ, (265)

where Σcr is the critical surface mass density of the lens defined to be

Σcr =
c2

4πG

Ds

Dd Dds
. (266)

For Σ = Σcr, α = θ, and we see an Einstein ring.
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general case For a more general case we now define the dimensionless surface
mass density, or convergence κ,

κ(θθθ) =
Σ(Dd θθθ)

Σcr
. (267)

A mass distribution which has κ ≥ 1 at some θθθ, will produce multiple images for some
source positions, as we observe in cases of strong gravitational lensing. κ therefore
distinguishes between the strong lensing regime (κ ≥ 1) and weak lensing regime
(κ≪ 1).

The Laplacian of the lensing potential is directly related to the convergence of
the lens using Poisson’s equation ∇2

ξΦ = 4πGρ(ξξξ, z) such that

∇2
θψ =

DdDds

Ds

2

c2

∫

∇2
ξΦ = 2κ(θθθ). (268)

8.2 Magnification and distortion

Liouville’s theorem, in basic terms, says that our lensed photon bundles evolve in the
same way in time, and will therefore have a density that does not change with time. This
combined with the absence of any photon emission or absorption process in gravitational
lensing implies that lensing conserves surface brightness. Therefore if gravitational
lensing increases the area of an image we will see magnification µ where

µ =
image area

source area
=
δθ2

δβ2
, (269)

for an element of source δβ2 mapped onto an area of image δθ2. Note that lensing
effectively focuses the light from a source. For a lensed source we receive photons that
we would have detected in the absence of the lens, plus additional photons on previously
nearby trajectories that are now bent into the detector by the lens.

If the source is much smaller than the angular scale on which the lens properties
change, then the lens mapping is described by the lensing Jacobian

Aij =

(

∂(βi)

∂(θj)

)

ij

= δij −
∂2ψ

∂θi∂θj
. (270)

This can be re-expressed in terms of the convergence and components of the shear, by
defining

κ ≡ (ψ11 + ψ22)/2

γ1 ≡ (ψ11 − ψ22)/2

γ2 ≡ ψ12,

(271)
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so that

Aij =

(

1− γ1 − κ −γ2
−γ2 1 + γ1 − κ

)

. (272)

The magnification is then given by the determinant of the inverse of A,

µ =
1

(1− κ)2 − γ2
. (273)

For a flux limited galaxy sample, magnification from the effect of weak gravitational
lensing by large scale structure, will increase the number density of galaxy images.

We will now define the reduced shear g = γ/(1− κ) such that

A = (1− κ)

(

1− g1 −g2
−g2 1 + g1

)

, (274)

showing the convergence κ only effects the size of the image and hence its magnification,
whereas the shear is responsible for image distortions affecting the shape or ellipticity
of the image.

8.3 Strong lensing

In the case of strong gravitational lensing (κ > 1) background galaxies appear multiply
imaged and strongly distorted with some images magnified and others de-magnified.
We define critical curves in the lens plane (β) along which images experience maximal
magnification. These critical curves can be mapped onto caustics in the source plane
which divide the source plane into regions of different multiplicity (see Figure 23). When
a source position crosses a caustic a pair of image near the critical curve is either created
or destroyed.

We can determine critical curves in the lens plane where the magnification µ→ ∞
(i.e. where det(A) → 0). Taking the simple example of an axially symmetric lens, we
can write equation (219) in terms of κ, finding α(θ) = θ κ̄(θ) where

κ̄(θ) =
2

θ2

∫ θ

0

dθ′ θ′ κ(θ′) =M(< θ)(πΣcr θ
2

D
2
d)

−1 (275)

andM(< θ) is the mass of the lens enclosed within radius θ. The lens equation becomes
βββ = [1− κ̄]θθθ and the Jacobian is then given by

A = (1− κ̄)I − κ̄′

θ

(

θ21 θ1θ2
θ1θ2 θ22

)

(276)

where

κ̄′ =
dκ̄

dθ
=

2

θ
[κ− κ̄] (277)
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Figure 23. The images formed by three sources on the source plane
due to gravitational lensing. We see that the number of images formed
by a source depends on its position relative to the caustic curves (blue).
The orange source lies outside the caustic and so produces only one image.
The blue source lies inside the radial caustic (dashed blue line), producing
three images, two of which are distorted in the radial direction. Due to
the radial symmetry of the lens, we see that the tangential critical curve
(solid red) maps back to a single degenerate point. The lime green source
close to the tangential caustic point forms three images, two of which are
stretched tangentially and one is a central demagnified image. Taken from
www.icosmo.org.

As Aii = 1− κ− γi,

γ = [κ− κ̄] exp2iφ (278)

det(A) = (1− κ)2 − |γ2| = (1− κ̄)(1 + κ̄− 2κ) (279)

Hence critical curves occur either when 1 − κ̄ = 0 (tangential critical curves) or when
1 + κ̄− 2κ = 0 (radial critical curves)

tangential curves A source galaxy positioned on a tangential critical curve will
become distorted tangentially into a giant arc characterised by the condition κ̄ = 1.
The radius of this arc is called the Einstein radius θE

θE =

(

4M(< θE)

c2
Dds

DsDd

)1/2

≃ 0.9′′
(

M(< θE)

1012M⊙

)1/2(
Dds1Gpc

Ds Dd

)1/2

(280)

This implies that if you observe a tangential arc you can immediately determine the
mass of the enclosed lens. Radial arcs are rarer to observe as they are seen close to the
centre of the lens. If observed they relate κ̄ to the local κ at the radial critical curve,
providing a measure of the density profile.

What about lens mass at radii θ > θE? Consider an annulus lens and a point
within the annulus. The deflection angle from opposite sides of the annulus are equal
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and opposite. Hence a lensed source is only affected by lens mass within the impact
radius. Strong lensing can therefore only tell us about the mass enclosed in the densest
regions of the lens that exhibit strong lensing features. We therefore need resort to weak
lensing to measure the total mass of a lens.

8.4 Observing weak lensing

Consider an isolated galaxy with surface brightness I(θθθ). We can define its shape
through the quadrupole moment of the light distribution,

Qij =

∫

d2θ I(θθθ)θi θj
∫

d2θ I(θθθ)
(281)

and an ellipticity from its axial ratio β and orientation φ,
(

e1
e2

)

=
1− β

1 + β

(

cos 2φ
sin 2φ

)

=
1

N

(

Q11 −Q22

2Q12

)

(282)

For a perfect ellipse we have written the ellipticity in terms of Qij where N =
Q11 + Q22 + 2(Q11Q22 − Q2

12)
1/2. Figure 24 shows these ellipticity parameters for a

series of ellipses.

Figure 24. Ellipticity parameters for a series of ellipses
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How is the ellipticity of the galaxy that we observe related to its intrinsic
ellipticity before it was lensed? For this we use the Jacobian to transform the image
quadrupole moments ,

Qs
ij = AilQlmAmj . (283)

and calculate the intrinsic ellipticity of the source es in terms of the observed ellipticity
e and the reduced shear g. In the weak gravitational lensing limit (κ≪ 1) Schneider &
Seitz (1995) show that,

es = e− g . (284)

This wonderfully simple relationship means that if all sources were circular (es = 0) a
measure of the lensed galaxy ellipticity directly recovers the gravitational shear g and
hence the underlying gravitational potential. In practice galaxies have a intrinsic shape,
but averaged over many galaxies 〈es〉 = 0. We can therefore determine g by measuring
the average ellipticity of a large sample of galaxies.

8.5 The simple isothermal sphere model

A model that is often used to describe the density of dark matter haloes is the simple
isothermal sphere (SIS);

ρ(r) =
σ2
v

2πGr2
(285)

where σv is the velocity dispersion of the halo. This profile produces flat rotation curves
but is singular (as r → ∞, ρ → ∞). It is therefore usual to also include a truncation
radius where ρ(> rT ) = 0. What lensing effects to we expect to observe around a SIS?

First we calculate the projected surface mass density, setting our co-ordinate
origin at the centre of the SIS halo.

Σ(ξ) =

∫ ∞

−∞

dℓ ρ(
√

ξ2 + ℓ2) =
σ2
v

2Gξ
(286)

The convergence is then

κ =
Σ

Σcr
=

2σ2
vπ

θc2
Dds

Ds
(287)

and the shear

γ = κ̄− κ =
2π σ2

v

c2
Dds

Dsθ
(288)

For a typical spiral galaxy halo the lensing shear is very weak γ ∼ 0.005. Compare this to
the intrinsic galaxy ellipticity which has a distribution 〈e2〉 ∼ 0.3. This weakly induced
distortion is therefore very difficult to measure and can only be measured statistically
by stacking the lensing signal around many thousands of halos.
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8.6 Weak lensing by large scale structure

Up to this point we have focused on extended but discrete lens systems: the strong
lensing cluster, the weak lensing galaxy halo. One of the great promises of weak lensing
as a tool for cosmology is the ability map out the extended large scale structure of the
Universe. Lensing is unique in this respect as it is sensitive to all matter irrespective of its
state or nature. Whilst the derivation of the lens theory for large scale structure differs
somewhat from our derivations thus far (we can no longer assume that the deflection of
light rays is small compared to the scale on which the lens mass distribution changes),
the fundamental results remain unchanged and we will use them. For a full derivation
see Bartelmann & Schneider (2001).

dark matter mapping Statistically we can observe a weak shear distortion γ
from the shapes of distant galaxies. What we want to measure is the distribution of
mass or the convergence κ. Kaiser & Squires (1993) were the first to show that you can
‘invert’ a map of a varying shear field across to sky to produce a map of the varying
mass distribution as follows:

We can derive a relationship between convergence and shear using the lensing
potential. Writing the deflection angle in terms of κ we have

α(θθθ) = ∇ψ(θθθ) = 1

π

∫

d2θ′ κ(θ′θ′θ′)
θθθ − θ′θ′θ′

|θθθ − θ′θ′θ′|2 , (289)

and the second derivatives of the lensing potential are then

ψi,j =
1

π

∫

d2θ′ κ(θ′θ′θ′)

[

δij
1

|θθθ − θ′θ′θ′|2 − 2(θi − θ′i)(θj − θ′j)
1

|θθθ − θ′θ′θ′|4
]

. (290)

Writing the two shear components in terms of the ’complex’ shear γ = γ1 + iγ2 and
recalling that 2γ1 = (ψ,11 − ψ,22) and γ2 = ψ,12 we can directly relate what we observe
(γ) to what we want to know (κ).

γ(θθθ) =
1

π

∫

d2θ′D(θθθ − θ′θ′θ′)κ(θ′θ′θ′) , (291)

where the window function D(θθθ) = −(θ1 − iθ2)
−1. This is solved in Fourier space

κ̂(k) =
1

π
D̂∗(k)γ̂(k) , (292)

where D̂(k) is the Fourier transform of the window function. To make a mass map we
therefore need to

• Obtain high resolution imaging of a large area of sky.

• Detect and measure the ellipticity e of all the resolved galaxies.

• Grid up the field and average e within cells to get γ(θθθ).
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• Take the Fourier transform of γ(θθθ) and multiply by the window function to get
κ̂(k).

• Fourier transform back and you have a map of the varying density κ(θθθ) across
your patch of sky.

Unfortunately in practice this is not as easy as it sounds due to finite fields and
masked holes in the data. The majority of research in this area therefore builds on this
theory to make it more applicable to real data. This theory can also be extended to
three dimensions (note κ is the projected surface mass density so the reconstructions
described above are in 2D). Full 3-D reconstructions of the dark matter density requires
the best data and to date has only been attempted using deep surveys from the Hubble
Space Telescope.

cosmological parameters Weak lensing gives us an unbiased measurement of
the matter distribution and hence the underlying matter power spectrum. We can
therefore use it to constrain cosmological parameters and it is particularly sensitive to
a combination of the matter density Ωm and the normalisation of the matter power
spectrum σ8. This is because lensing is sensitive to both mass (Ωm) and its distribution
(σ8). Stronger clustering results in a higher fraction of regions with strong shear. To
constrain cosmological parameters we typically use 2pt statistics. We’ll focus on the
2pt shear correlation function ξ which can be estimated from the data using

E[ξ] =

2
∑

α=1

∑

pairs eα(xxx) eα(xxx+ θθθ)

Npairs
. (293)

Figure 25 shows the most recent measurement of this statistic from the Canada-France-
Hawaii Telescope Legacy Survey. On small angular scales we see galaxy shapes are very
correlated (their light has been distorted by the same intervening matter). On large
angular scales the correlation weakens as the galaxies are lensed by different structures
that are only weakly correlated.

It can be shown (but we won’t ask you to show it) that the 2pt shear correlation
function is related to the matter power spectrum

ξ(θ) =
1

2π

∫

dk k Pκ(k) J0(kθ), (294)

where J0 is the zeroth order Bessel function and Pκ is the power spectrum of the
convergence,

Pκ(l) =
9H4

0Ω
2
m

4c4

∫ wH

0

dw
g2(w)

a2(w)
Pδ

(

l

fK(w)
, w

)

, (295)

Pδ is the 3D matter power spectrum, fK(w) is the comoving angular diameter distance
out to a radial distance w, and g(w) is a weighting function that depends on the redshift
distribution of the survey (Bartelmann & Schneider 2001).
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Figure 25. The 2pt correlation function measured from the CFHTLS
survey. Figure taken from Fu et al (2008). In red, the measured signal.
In black (open), an estimate of the systematic errors.

A measurement of the correlation between galaxy ellipticities can therefore
be directly related to the underlying matter power spectrum! Figure 26 shows the
cosmological constraints from this data set compared to constraints from the CMB.

dark energy and modified gravity We have shown that weak lensing can
probe dark matter but what about dark energy? Dark energy acts to oppose the
clustering of dark matter over time, suppressing the growth of structure. In addition
dark energy changes the distance-redshift relation. Lensing is sensitive to both these
effects and in the future will be able to set very tight constraints on the properties
of dark energy. The other main probes of dark energy are supernovae or baryon
acoustic oscillations. These probes are only sensitive to the distance-redshift relation
and cannot distinguish between the cosmological constant or a modification to our
theories of gravity. If we find that the constraints from lensing (based on GR) are in
disagreement with those from distance-redshift probes this would be evidence for a new
beyond-Einstein model of gravity.

systematics A short and final word on systematics. The theory of weak lensing
is very elegant and provides a direct route from an observable (galaxy shape) to the
underlying matter power spectrum. It is therefore touted as the most promising probe
of the Dark Universe. The observational measurement however is very non-trivial. It
requires exquisite knowledge of the telescope, optics and atmospheric conditions and
novel, fast computational techniques to extract shape information, at high accuracy, for
thousands upon thousands of galaxies. Further, in all our derivations we have assumed
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Figure 26. Constraints on the matter density parameter Ωm and
the normalisation of the matter power spectrum σ8 from weak lensing
(CFHTLS survey, blue), and the CMB (WMAP, green), with joint
constraints (yellow). Figure taken from Fu et al (2008).

that galaxies have random orientation - i.e any alignment we see comes exclusively from
the lensing distortion. This has been shown not to be the case as neighbouring galaxies
have a weak tendency to align. Current research focuses on ensuring these sources of
systematics can be minimised and accounted for in preparation for the next generation
of lensing telescopes that are being built to ‘observe’ the Dark Universe.
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9 CMB anisotropies – I

So far, we have concentrated on describing perturbations in the matter density, and
will go on to discuss ways in which these may be observed. But first, we should put in
place the corresponding machinery for the fluctuations in the radiation density. These
can be observed directly in terms of fluctuations in the temperature of the CMB, which
relate to the density fluctuation field at z ≃ 1100. We therefore have the chance to
observe both current cosmic structure and its early seeds. By putting the two together
and requiring consistency, the cosmological model can be pinned down with amazing
precision.

9.1 Anisotropy mechanisms

Fluctuations in the 2D temperature perturbation field are treated similarly to density
fluctuations, except that the field is expanded in spherical harmonics, so modes of
different scales are labelled by multipole number, ℓ:

δT

T
(q̂) =

∑

amℓ Yℓm(q̂), (296)

where q̂ is a unit vector that specifies direction on the sky. The spherical harmonics
satisfy the orthonormality relation

∫

YℓmY
∗
ℓ′m′ d2q = δℓℓ′δmm′ , so the variance in

temperature averaged over the sky is

〈

(

δT

T

)2
〉

=
1

4π

∑

ℓ,m

|amℓ |2 =
1

4π

∑

ℓ

(2ℓ+ 1)Cℓ (297)

The spherical harmonics are familiar as the eigenfunctions of the angular part of∇2, and
there are 2ℓ + 1 modes of given ℓ, hence the notation for the angular power spectrum,
Cℓ. For ℓ ≫ 1, the spherical harmonics become equivalent to Fourier modes, in which
the angular wavenumber is ℓ; therefore one can associate a ‘wavelength’ 2π/ℓ with each
mode.

Once again, it is common to define a ‘power per octave’ measure for the
temperature fluctuations:

T 2(ℓ) = ℓ(ℓ+ 1)Cℓ/2π (298)

(although shouldn’t ℓ(ℓ+1) be ℓ(ℓ+1/2)? – see later). Note that T 2(ℓ) is a power per
ln ℓ; the modern trend is often to plot CMB fluctuations with a linear scale for ℓ – in
which case one should really use T 2(ℓ)/ℓ.

We now list the mechanisms that cause primary anisotropies in the CMB
(as opposed to secondary anisotropies, which are generated by scattering along
the line of sight). There are three basic primary effects, illustrated in figure 27, which
are important on respectively large, intermediate and small angular scales:
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Figure 27. Illustrating the physical mechanisms that cause CMB
anisotropies. The shaded arc on the right represents the last-scattering
shell; an inhomogeneity on this shell affects the CMB through its potential,
adiabatic and Doppler perturbations. Further perturbations are added
along the line of sight by time-varying potentials (Rees–Sciama effect)
and by electron scattering from hot gas (Sunyaev–Zeldovich effect). The
density field at last scattering can be Fourier analysed into modes of
wavevector k. These spatial perturbation modes have a contribution that
is in general damped by averaging over the shell of last scattering. Short-
wavelength modes are more heavily affected (i) because more of them fit
inside the scattering shell, and (ii) because their wavevectors point more
nearly radially for a given projected wavelength.

(1) Gravitational (Sachs–Wolfe) perturbations. Photons from high-density regions at
last scattering have to climb out of potential wells, and are thus redshifted:

δT

T
=

1

3
(Φ/c2). (299)

The factor 1/3 is a surprise, which arises because Φ has two effects: (i) it redshifts the
photons we see, so that an overdensity cools the background as the photons climb out,
δT/T = Φ/c2; (ii) it causes time dilation at the last-scattering surface, so that we seem
to be looking at a younger (and hence hotter) universe where there is an overdensity.
The time dilation is δt/t = Φ/c2; since the time dependence of the scale factor is a ∝ t2/3

and T ∝ 1/a, this produces the counterterm δT/T = −(2/3)Φ/c2.

(2) Intrinsic (adiabatic) perturbations. In high-density regions, the coupling of matter
and radiation can compress the radiation also, giving a higher temperature:

δT

T
=
δ(zLS)

3
, (300)
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(3) Velocity (Doppler) perturbations. The plasma has a non-zero velocity at
recombination, which leads to Doppler shifts in frequency and hence brightness
temperature:

δT

T
=
δv · r̂
c

. (301)

To the above list should be added ‘tensor modes’: anisotropies due to
a background of primordial gravitational waves, potentially generated during an
inflationary era (see below).

There are in addition effects generated along the line of sight. One important
effect is the integrated Sachs-Wolfe effect (ISW effect), which arises when the
potential perturbations evolve:

δT

T
=

1

c2

∫

(Ψ̇ + Φ̇) dt. (302)

In the usual Ψ = Φ limit, this is twice as large as one might have expected from
Newtonian intuition. This factor 2 thus has an origin that is similar to the factor 2
for relativistic light deflection (where the one-line argument is that the gravitational
potential modifies both the time and space parts of the metric, and each contribute
equally to the effective change in the coordinate speed of light). But the ISW effect is a
little more subtle, and we shall just accept the result as intuitively plausible. As we have
seen, the potential Φ stays constant in the linear regime during the matter-dominated
era, as long as Ωm ≃ 1, so the source term for the ISW effect vanishes for much of the
universe’s history. The ISW effect then becomes only important quite near to the last
scattering redshift (because radiation is still important) and at low z (because of Λ).

Other foreground effects are to do with the development of nonlinear structure,
and are mainly on small scales (principally the Sunyaev–Zeldovich effect from IGM
Comptonization). The exception is the effect of reionization; to a good approximation,
this merely damps the fluctuations on all scales:

δT

T
→ δT

T
exp−τ, (303)

where the optical depth must exceed τ ≃ 0.04, based on the highest-redshift quasars
and the BBN baryon density. As we will see later, CMB polarization data have detected
a signature consistent with τ = 0.1± 0.03, implying reionization at z ≃ 10.

9.2 Power spectrum

We now need to see how the angular power spectrum of the CMB arises from the
implementation of these effects. The physical separation we have made is useful for
insight, although it is not exactly how things are calculated in practice. We have not
been able to spend time going into the detailed formalism used on CMB anisotropies,
and the details will have to be omitted here – although the actual equations to be
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integrated are not enormously complicated. For the present purpose, we will make a
few comments about why the exact approach is complicated, and then retreat to a
simpler approximate treatment.

boltzmann equation The full apparatus of perturbing the Einstein gravitational
field equations yields equations that are the analogues of the ones we have derived
previously in the Newtonian approximation. The additional element to be added is the
Boltzmann equation, which expresses the fact that photons are not a fluid, so we
have to account explicitly for their momentum-space distribution. For a given Fourier
mode, this obeys

Θ′ + ikµΘ = −Φ′ − ikµΨ− τ ′[µub −Θ]

u′b +
a′

a
ub = −ikΨ+ τ ′[ub + 3iΘ1]/R.

(304)

Here, Θ is the fractional temperature perturbation for photons travelling in a
given direction, µ is cosine of the angle between k and the line of sight, R = 3ρb/4ργ , and
we have simplified things to the extent of assuming Thomson scattering to be isotropic.
Usually, these equations are written in terms of conformal time, and derivatives with
respect to η are denoted by dashes.

Every term here has an immediately clear physical interpretation. The lhs of the
first equation is a convective derivative, representing information carried by photon
free-streaming; the first two terms on the rhs are the time dilation and gravitational
redshift effects from the Sachs-Wolfe effect; the last term represents the redistribution
of photons by Thomson scattering, which brings in the optical depth, τ , and includes a
Doppler boost from the velocity of the baryon fluid. The second equation is the force
equation for the baryon velocity, which is of our familiar form, except that it includes
a second term on the rhs to represent momentum transfer from the scattered photons.
This is quite nasty, as it involves Θ1, the dipole moment of the temperature.

The natural approach is to start in Fourier space and consider a density
fluctuation of given wavevector k; if we can work out how this appears as an
induced temperature fluctuation on the CMB sky, then the problem can be solved
by superposition. The wavevector k sets a natural polar axis, and the temperature
anisotropy corresponds to knowing the photon phase-space distribution at our location
in space (i.e. the distribution of the photons in energy and as a function of angle with
respect to k). Evolving this function is hard principally because of the coupling between
radiation and matter, which is by Thomson scattering. Scattering a beam of photons
that come from a given direction will tend to push the electron in the opposite direction,
so a nett force requires an anisotropic the photon distribution. In fact, it is clear that
the force must be proportional to the dipole moment of the distribution function, and
this is obviously a problem: it couples the evolution of the number of photons travelling
at a given direction with a knowledge of the whole distribution. Mathematically, we
have an integro-differential equation.

In practice, rather than trying to solve numerically for the photon distribution
function (normally denoted by Θ), we can carry out a multipole transform to work
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with Θℓ. The integro-differential equation then becomes a set of equations that couple
different ℓ values. These have to be solved as a large set of equations (we will see that
the CMB power spectrum contains signal at least to ℓ >∼ 1000), and when this is done we
still have to integrate over k space. It took many years to solve this numerical challenge,
and even then the computations were very slow. But a key event in cosmology was the
1996 release of CMBFAST, a public Boltzmann code that allowed computation of the
CMB angular power spectrum sufficiently rapidly that a large range of models could be
investigated by non-specialists.

tight-coupling projection approach An alternative approximate method
is to imagine that the temperature anisotropies exist as a 3D spatial field. The last-
scattering surface can be envisaged as a slice through this field, so the angular properties
are really just a question of understanding the projection that is involved. This works
reasonably well in the tight coupling limit where photons and baryons are a single
fluid – but this is of course breaking down at last scattering, where the photon mean
free path is becoming large.

The projection is easily performed in the flat-sky approximation, where
we ignore the curvature of the celestial sphere. The angular wavenumber is then just
ℓ = KDH, where DH is the distance to the last-scattering surface and K is a 2D
transverse physical wavenumber (K2 = k2x + k2y). The relation between 3D and 2D
power spectra is easily derived: we just add up the power along the unused axis, kz:

P2D(kx, ky) =
∑

kz

P3D(kx, ky, kz) =
L

2π

∫ ∞

−∞

P3D(k) dkz. (305)

In terms of dimensionless power, this is

∆2
2D(K) =

(

L

2π

)2

2πK2 P2D(K) = K2

∫ ∞

0

∆2
3D(k) dkz/k

3, (306)

where k2 = K2 + k2z . The 2D spectrum is thus a smeared version of the 3D one, but
the relation is pleasingly simple for a scale-invariant spectrum in which ∆2

3D(k) is a
constant:

∆2
2D(K) = ∆2

3D. (307)

The important application of this is to the Sachs-Wolfe effect, where the 3D
dimensionless spectrum of interest is that of the potential, ∆2

Φ = δ2
H
. This shows that

the angular spectrum of the CMB should have a flat portion at low ℓ that measures
directly the metric fluctuations.

This is the signature that formed the first detection of CMB anisotropies – by
COBE in 1992; we will see below that this corresponds to

δH ≃ 3× 10−5. (308)
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This immediately determines the large-scale matter power spectrum in the universe
today. We know from Poisson’s equation that the relation between potential and density
power spectra at scale factor a is

∆2
Φ = (4πGρma

2/k2)2∆2(a) ≡ δ2
H
. (309)

Converting to the present, ∆2 = a−2∆2(a)f(Ωm)2, and we get

∆2 = (4/9)δ2
H

(

ck

H0

)4

Ω−2
m f(Ωm)2 (310)

(where f(Ωm), ≃ Ω0.23
m for a flat universe, is the growth suppression factor). This

expression is modified on small scales by the transfer function, but it shows how mass
fluctuations today can be deduce from CMB anisotropies. As an aside, a more informal
argument in the opposite direction is to say that we can estimate the depth of potential
wells today:

v2 ∼ GM

r
⇒ Φ

c2
∼ v2

c2
, (311)

so the potential well of the richest clusters with velocity dispersion ∼ 1000 km s−1 is of
order 10−5 deep. It is therefore no surprise to see this level of fluctuation on the CMB
sky.

Finally, it is also possible with some effort to calculate the full spherical-harmonic
spectrum from the 3D spatial spectrum. For a scale-invariant spectrum, the result is

Cℓ =
6

ℓ(ℓ+ 1)
C2, (312)

which is why the broad-band measure of the ‘power per log ℓ’ is defined as

T 2(ℓ) =
ℓ(ℓ+ 1)

2π
Cℓ. (313)

Finally, a word about units. The temperature fluctuation ∆T/T is dimensionless,
but anisotropy experiments generally measure ∆T directly, independent of the mean
temperature. It is therefore common practice to quote T 2 in units of (µK)2.

characteristic scales We now want to look at the smaller-scale features of the
CMB. The current data are contrasted with some CDM models in figure 28. The key
feature that is picked out is the dominant peak at ℓ ≃ 220, together with harmonics of
this scale at higher ℓ. How can these features be understood?

The main point to appreciate is that the gravitational effects are the ones that
dominate on large angular scales. This is easily seen by contrasting the temperature
perturbations from the gravitational and adiabatic perturbations:

δT

T
≃ 1

3

Φ

c2
(gravity);

δT

T
≃ 1

3

δρ

ρ
(adiabatic). (314)
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Figure 28. Angular power spectra T 2(ℓ) = ℓ(ℓ + 1)Cℓ/2π for the
CMB, plotted against angular wavenumber ℓ in radians−1. For references
to the experimental data, see Spergel et al. (2006). The two lines
show model predictions for adiabatic scale-invariant CDM fluctuations,
calculated using the CMBFAST package (Seljak & Zaldarriaga 1996). These
have (n,Ωm,Ωb, h) = (1, 0.3, 0.05, 0.65) and have respectively Ωv = 1−Ωm

(‘flat’) and Ωv = 0 (‘open’). The main effect is that open models shift the
peaks to the right, as discussed in the text.

Poisson’s equation says ∇2Φ = −k2Φ = 4πGρ(δρ/ρ), so there is a critical (proper)
wavenumber where these two effects are equal: k2crit ∼ Gρ/c2. The age of the universe
is always t ∼ (Gρ)−1/2, so this says that

kcrit ∼ (ct)−1. (315)

In other words, perturbations with wavelengths above the horizon size at last
scattering generate δT/T via gravitational redshift, but on smaller scales it is adiabatic
perturbations that matter.

The significance of the main acoustic peak is therefore that it picks out the
(sound) horizon at last scattering. The redshift of last scattering is almost independent

104



of cosmological parameters at zLS ≃ 1100, as we have seen. If we assume that the
universe is matter dominated at last scattering, the horizon size is

DLS

H
= 184 (Ωmh

2)−1/2Mpc. (316)

The angle this subtends is given by dividing by the current size of the horizon (strictly,
the comoving angular-diameter distance to zLS). Again, for a matter-dominated model
with Λ = 0, this is

DH = 6000Ω−1
m h−1Mpc ⇒ θH = DLS

H
/DH = 1.8Ω0.5

m degrees. (317)

Figure 28 shows that heavily open universes thus yield a main CMB peak at scales
much smaller than the observed ℓ ≃ 220, and these can be ruled out. Indeed, open
models were disfavoured for this reason long before any useful data existed near the
peak, simply because of strict upper limits at ℓ ≃ 1500 (Bond & Efstathiou 1984). In
contrast, a flat vacuum-dominated universe has DH ≃ 6000Ω−0.4

m h−1Mpc, so the peak
is predicted at ℓ ≃ 2π/(184/6000) ≃ 200 almost independent of parameters. These
expression lie behind the common statement that the CMB data require a flat universe
– although it turns out that large degrees of spatial curvature and Λ can also match
the CMB well.

The second dominant scale is imposed by the fact that the last-scattering surface
is fuzzy – with a width in redshift of about δz = 80. This imposes a radial smearing
over scales σr = 7(Ωmh

2)−1/2 Mpc. This subtends an angle

θr ≃ 4 arcmin, (318)

for flat models. This is partly responsible for the fall in power at high ℓ (Silk damping
also contributes). Finally, a characteristic scale in many density power spectra is set by
the horizon at zeq. This is 16(Ωh

2)−1 Mpc and subtends a similar angle to θr.

reionization As mentioned previously, it is plausible that energy output from
young stars and AGN at high redshift can reionize the intergalactic medium. Certainly,
we know empirically from the lack of Gunn–Peterson neutral hydrogen absorption
in quasars that such reheating did occur, and at a redshift in excess of 6. The
consequences for the microwave background of this reionization depend on the Thomson-
scattering optical depth:

τ =

∫

σT ne dℓprop =

∫

σT ne
c

H0

dz

(1 + z)
√

1− Ωm +Ωm(1 + z)3
(319)

(for a flat model). If we re-express the electron number density in terms of the baryon
density parameter as

ne = Ωb
3H2

0

8πGµmp
(1 + z)3, (320)
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where the parameter µ is approximately 1.143 for a gas of 25% helium by mass, and do
the integral over redshift, we get

τ = 0.04h
Ωb

Ωm

[

√

1 + Ωmz(3 + 3z + z2)− 1
]

≃ 0.04h
Ωb

Ω
1/2
m

z3/2. (321)

Predictions from CDM galaxy formation models tend to predict a reheating redshift
between 10 and 15, thus τ between 0.1 and 0.2 for standard parameters. The main
effect of this scattering is to damp the CMB fluctuations by a factor exp(−τ), but this
does not apply to the largest-scale angular fluctuations. To see this, think backwards:
where could a set of photons scattered at z have come from? If they are scattered by an
angle of order unity, they can be separated at the last-scattering surface by at most the
distance from z to zLS – which is almost exactly the horizon size at z. The geometry of
this situation is shown in figure 29, which illustrates that the critical angle is the angle
subtended today by the horizon size at the redshift of the secondary scattering; for a
flat model, this is approximately z−1/2 radians, so modes with ℓ < z1/2 are unaffected.
This turns out to be a critical factor in changing the apparent shape of the CMB power
spectrum.

10 CMB anisotropies – II

Having given an outline of the physical mechanisms that contribute to the CMB
anisotropies, we now examine how the CMB is used in conjunction with other probes
to pin down the cosmological model.

The information we gain from the CMB is dominated by the main acoustic
peak at ℓ = 220, and it is interesting to ask what this tells us. We have argued that
the location of this feature marks the angle subtended by the acoustic horizon at last
scattering, which has been given as DLS

H
= 184 (Ωmh

2)−1/2Mpc. Using the current size
of the horizon, the angle subtended in a flat model is

DH = 6000Ω−0.4
m h−1Mpc ⇒ θH = DLS

H
/DH ∝ Ω−0.1

m , (322)

so there is very little dependence of peak location on cosmological parameters. This
contrast between little dependence on density for flat models and a large density
dependence for models with no cosmological constant is often used to argue that
the CMB proves flatness; but this ignores the case where both curvature and Λ are
important, and independent constraints on the density are needed before this possibility
can be ruled out.

However, this argument is incomplete in detail because the earlier expression for
DH(zLS) assumes that the universe is completely matter dominated at last scattering,
and this is not perfectly true. The comoving sound horizon size at last scattering is
defined by

DS(zLS) ≡
1

H0Ω
1/2
m

∫ aLS

0

cS
(a+ aeq)1/2

da (323)
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Figure 29. Illustrating the effect of secondary scattering of CMB
photons owing to reionization at redshift z. An observer O sees radiation
apparently from A, which in fact originates at point B somewhere
on the last scattering shell around z (shown dotted). To a good
approximation, the distance to last scattering is the horizon distance; thus
CMB fluctuations of angular scale beyond rH(z)/rH(0) cannot be erased
by this secondary scattering.

where vacuum energy is neglected at these high redshifts; the expansion factor a ≡
(1 + z)−1 and aLS, aeq are the values at last scattering and matter-radiation equality
respectively. In practice, zLS ≃ 1100 independent of the matter and baryon densities,
and cS is fixed by Ωb. Thus the main effect is that aeq depends on Ωm. Dividing by
DH(z = 0) therefore gives the angle subtended today by the light horizon as

θH ≃ Ω−0.1
m√

1 + zLS

[√

1 +
aeq
aLS

−
√

aeq
aLS

]

, (324)

where zLS = 1100 and aeq = (23900ωm)−1. This remarkably simple result captures
most of the parameter dependence of CMB peak locations within flat ΛCDM models.
Differentiating this equation near a fiducial ωm = 0.13 gives

∂ ln θH
∂ lnΩm

∣

∣

∣

∣

ωm

= −0.1;
∂ ln θH
∂ lnωm

∣

∣

∣

∣

Ωm

= 1
2

(

1 +
aLS

aeq

)−1/2

= +0.25, (325)
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Thus for moderate variations from a ‘fiducial’ flat model, the CMB peak
multipole number scales approximately as ℓpeak ∝ Ω−0.15

m h−0.5, i.e. the condition for
constant CMB peak location is well approximated as

Ωmh
3.3 = constant, (326)

provided spatial curvature vanishes. It is now clear how LSS data combines with the
CMB: Ωmh is the main combination probed by the matter power spectrum so this
approximate degeneracy is strongly broken using the combined data.

10.1 Geometrical degeneracies

The above relation is an example of a more general phenomenon: although the
appearance of the CMB depends on a restricted set of combinations of cosmological
parameters, we cannot measure all parameters at once from the CMB alone. For a given
primordial spectrum (i.e. given ns), the CMB temperature power spectrum depends
on the physical densities ωm ≡ Ωmh

2, ωb ≡ Ωbh
2. Now, it is possible to vary both Ωv

and the curvature to keep a fixed value of the angular size distance to last scattering,
so that the resulting angular CMB pattern will be invariant. The usual expression for
the comoving angular-diameter distance is

R0Sk(r) =
c

H0
|1− Ω|−1/2 ×

Sk

[

∫ z

0

|1− Ω|1/2 dz′
√

(1− Ω)(1 + z′)2 +Ωv +Ωm(1 + z′)3

]

,
(327)

where Ω = Ωm + Ωv. Defining ωi ≡ Ωih
2, this can be rewritten in a way that has no

explicit h dependence:

R0Sk(r) =
3000Mpc

|ωk|1/2
Sk

[

∫ z

0

|ωk|1/2 dz′
√

ωk(1 + z′)2 + ωv + ωm(1 + z′)3

]

, (328)

where ωk ≡ (1− Ωm − Ωv)h
2. This parameter describes the curvature of the universe,

treating it effectively as a physical density that scales as ρ ∝ a−2; in the Friedmann
equation, curvature cannot be distinguished from another contribution to the density,
although clearly the form of the RW metric is able to tell the difference. The ωk notation
is therefore slightly misleading.

For fixed ωm and ωb, there is therefore a degeneracy between curvature (ωk)
and vacuum (ωv): these two parameters can be varied simultaneously to keep the
same apparent distance, and hence the same angular structure in the CMB. govern the
proportionality between length at last scattering and observed angle. The degeneracy is
not exact, and is weakly broken by the Integrated Sachs-Wolfe effect from
evolving potentials at very low multipoles, and by second-order effects at high ℓ.
However, strong breaking of the degeneracy requires additional information. This could
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Figure 30. The CMB geometrical degeneracy, for the fiducial flat
vacuum-dominated model. This says that zero vacuum density can be
tolerated, provided the ‘curvature density’ is negative – i.e. a closed
universe. Since the fiducial value of ωm is 0.133, ωk = −.031 implies that
a Hubble parameter h = 0.32 would be required in this case. Provided we
are convinced that h must be higher than this, vacuum energy is required.

be in the form of external data on the Hubble constant, which is determined implicitly
by the relation

h2 = ωm + ωv + ωk, (329)

so specifying h in addition to the physical matter density fixes ωv + ωk and removes
the degeneracy. In practice, the most accurate constraints are obtained by adding
independent probes that have sensitivity to the matter density: the supernova Hubble
diagram; large-scale structure; gravitational lensing.

10.2 Degeneracy breaking with detailed CMB data

Although the main horizon-scale peak in the power spectrum dominates the appearance
of the CMB, giving degenerate information about cosmological parameters, the fine
detail of the pattern is also important. As the quality of the CMB measurements
improve, more information can be extracted, and the parameter degeneracies are

109



Figure 31. The location of the principal peak in the CMB power
spectrum is largely determined by the combination Ωmh

3.3, representing
the scaling of the angular size of the horizon at last scattering. The
two other main characteristics are the rise to the peak, and the fall to
the second and subsequent maxima. The former (the height of the peak
above the Sachs-Wolfe plateau) is influenced by the early-time ISW effect.
This is illustrated in the first panel, where we fix Ωbh

2 and hence the
sound speed. For fixed peak location, higher h gives lower matter density,
and hence a higher peak from the early-time ISW effect (all models are
normalized at ℓ = 20). The second panel shows the influence of varying
the baryon density at constant matter density, where we see that a higher
baryon fraction increases the amplitude of the acoustic oscillations. Thus,
if we assume flatness, the three observables of the peak location and drops
to either side suffice to determine Ωm, Ωb and h.

increasingly broken by the CMB alone. Regarding the structure around the peak, two
physical effects are important in giving this extra information:

(1) Early ISW. We have seen that the transition from radiation domination
to matter domination occurs only just before last scattering. Although we have proved
that potential fluctuations Φ stay constant during the radiation and matter eras (while
vacuum and curvature are negligible), this is not true at the junction, and there is a
small change in Φ during the radiation–matter transition (by a factor 9/10: see chapter
7 of Mukhanov’s book). This introduces an additional ISW effect, which boosts the
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amplitude of the peak, especially for models with low Ωmh
2, which brings zeq right

down to zLS (see the first panel of figure 31).

(2) Baryon loading. If we keep the overall matter density fixed but alter
the baryon fraction, the sound speed at last scattering changes. This has the effect of
making a change in the amplitude of the acoustic oscillations beyond the first peak:
the drop to the second peak is more pronounced if the baryon fraction is high (see the
second panel of figure 31).

Overall, the kind of precision data now delivered by WMAP and SPT (shown
in Figure 32) allows these effects to be measured, and the degeneracy between Ωm, Ωb

and h broken without external data.

Figure 32. The CMB power spectrum as measured on large scales by
WMAP and on smaller scales by the South Pole Telescope. Here, Dℓ/T

2
0

means the same as our T 2, i.e. ℓ(ℓ + 1)Cℓ/2π. Amazingly, as many as
nine acoustic peaks are visible, without any real need for a guiding model.
Note that for ℓ >∼ 2000 the primordial CMB signal gains a background
contribution from point sources (dusty starburst galaxies and the SZ effect
from the gas in clusters and groups of galaxies)

10.3 Tensor modes

All of our discussion to date applies to models in which scalar modes dominate. But
we know that gravity-wave metric perturbations in the form of a traceless symmetric
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tensor hµν are also possible, and that inflation predicts that a background of such waves
is generated, with amplitude

hrms ∼ Hinflation/mP. (330)

These tensor metric distortions are observable via the large-scale CMB anisotropies,
where the tensor modes produce a spectrum with the same scale dependence as the
Sachs–Wolfe gravitational redshift from scalar metric perturbations. In the scalar case,
we have δT/T ∼ φ/3c2, i.e. of order the Newtonian metric perturbation; similarly, the
tensor effect is

(

δT

T

)

GW

∼ hrms. (331)

Could the large-scale CMB anisotropies actually be tensor modes? This would be
tremendously exciting, since it would be a direct window into the inflationary era. The
Hubble parameter in inflation is H2 = 8πGρ/3 ∼ V (φ)/m2

P
, so that

(

δT

T

)

GW

∼ hrms ∼ H/mP ∼ V 1/2/m2
P
. (332)

A measurement of the tensor modes in the CMB would therefore tell us directly the
energy scale of inflation: Einflation ∼ V 1/4. This is more direct than the scalar signature,
which was

δH ∼ V 1/2

m2
P
ǫ1/2

, (333)

where ǫ is the principal slow-roll parameter (dimensionless version of the gradient-
squared of the potential).

From these relations, we can see that the tensor-to-scalar ratio in the
large-scale CMB power spectra just depends on ǫ:

r ≡ T 2
T
/T 2

S
= 16ǫ (334)

(putting in the factor of 16 from an exact analysis). We have argued that ǫ cannot be
too small if inflation is to end, so significant tensor contributions to the CMB anisotropy
are a clear prediction. As a concrete example, consider power-law inflation with a ∝ tp,
where we showed that ǫ = η/2 = 1/p. In this case,

r = 8(1− ns), (335)

so the larger the tilt, the more important the tensors. We will see below that there is
fairly strong evidence for a non-zero tilt with ns ≃ 0.96, so the simplest expectation
would be a tensor contribution of r ≃ 0.3. Of course, this only applies for a large-
field model like power-law inflation; it is quite possible to have a small-field model with
|η| ≫ |ǫ|, in which case there can be tilt without tensors.
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An order unity tensor contribution would imply metric distortions at the level
of 10−5, which might sound easy to detect directly. The reason this is not so is that
the small-scale tensor fluctuations are reduced today: their energy density (which is
∝ h2) redshifts away as a−4 once they enter the horizon. This redshifting produces a
break in the spectrum of waves, reminiscent of the matter transfer spectrum, so that
the tensor contribution to the CMB declines for ℓ >∼ 100. This redshifting means that
the present-day metric distortions are more like 10−27 on relevant scales (kHz gravity
waves) than the canonical 10−5. Even so, direct detection of these relic gravity waves
can be contemplated, but this will be challenging in the extreme. At the current rate of
progress in technology, the necessary sensitivity may be achieved around 2050; but the
signal may be higher than in the simple models, so one should be open to the possibility
of detecting this ultimate probe of the early universe.

Figure 33. The galaxy power spectrum from the 2dF Galaxy Redshift
Survey, shown as the contribution to the fractional density variance
per ln k against wavenumber (spatial wavelength is λ = 2π/k). The
data are contrasted with CDM models having scale-invariant primordial
fluctuations (ns = 1) and Ωmh = 0.1, 0.15, 0.2, 0.25, 0.3. The dotted
lines show pure CDM models, whereas the solid lines show the effect of
baryons at the nucleosynthesis level (assuming Ωb = 0.04 and h = 0.7).
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11 Combined constraints on the cosmological model

We have shown that, given perfect data, the CMB anisotropy power spectrum alone is
able to determine the main cosmological parameters. But current data are still some
way from being ideal – and this capability weakens when we expand the model to
include ingredients that are as yet undetected, but which have a reasonable theoretical
motivation. However, additional information from large-scale structure cures these
problems effectively.

the galaxy power spectrum A key aim in observational cosmology has long
been to use the expected feature at the zeq horizon scale to measure the density of the
universe. Data on galaxy clustering is now sufficiently good that this can be done quite
accurately. The measured power spectrum from the 2dF Galaxy Redshift Survey is
contrasted with CDM models (for which |δk|2 ∝ knT 2

k ) in figure 33. The curvature of
the spectrum is clearly measured, leading to the constraint

Ωmh = 0.168± 0.016. (336)

For h = 0.7 ± 10%, as indicated by absolute external measurements, this gives
Ωm = 0.24 ± 0.03. The 2dFGRS results also give a detection of the expected baryon
features, leading to a measurement of the baryon fraction:

Ωb/Ωm = 0.185± 0.046 (337)

(see Cole et al. astro-ph/0501174). Although this is not as accurate a measurement of
the baryon fraction as we obtain from the CMB, it is a more direct piece of evidence
that collisionless dark matter is needed; with only baryonic matter, the galaxy power
spectrum would be expected to display the same order-unity oscillations that we see in
the CMB power spectrum.

In order to reach these conclusions, however, it is necessary to make an
assumption about the primordial spectrum, which was taken to be scale-invariant with
n = 1. Values n < 1 would correspond to a larger inferred density, and LSS data cannot
break this degeneracy with tilt. The best way to constrain n is to combine with data
on CMB anisotropies; as we have discussed, these probe larger scales and give a robust
measure of n, which indeed turns out to be very close to unity. Similarly, LSS data
do not make any statement about the curvature of the universe. Again, this can be
measured from the CMB given the use of LSS data to limit possible combinations of
matter content and h, and so break the geometrical degeneracy.

combined constraints from cmb+lss Following the superb WMAP results
(first announced in Spergel et al. 2006; astro-ph/0603449, with arxiv:1212.5226 giving
the final results), the statistics of the temperature field are measured sufficiently
precisely that many of the parameter degeneracies we have worried about are broken,
at least weakly. This comes partly from the polarization measurements, and also via
the ISW effect. In general, what we have to do is explore a multidimensional parameter
space, which can easily be 11-dimensional, as shown in Table 1.

114



Figure 34. The basic WMAP3 confidence contours on the key
cosmological parameters for flat scalar-only models (from Spergel et al.
2006).

This is frequently reduced to 7 free parameters (ignoring tensors and the neutrino
mass fraction, and assuming w = −1): a scalar CDM universe. In this case, the
interesting parameter to focus on is the curvature. The likelihood of the data given
the model parameters is regarded as a probability density for the parameters, and we
marginalize by integrating this distribution over the uninteresting parameters. This
leaves a probability distribution for the curvature, which is sharply peaked about zero:

Ωk = −0.0059± 0.0040. (338)

This is normally taken as sufficient empirical justification (in addition to inflationary
prejudice) to assuming exact flatness when trying to set constraints on more exotic
ingredients (tensors; w 6= −1). But so far these are not required, and there is a very
well specified 6-parameter standard model, as shown in figure 35 and Table 2.
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Table 1. Cosmological parameters.

Parameter Meaning
ωdm Physical density of dark matter
ωb Physical density of baryons
ωv Physical density of vacuum
w Equation of state of vacuum
ωk Curvature ‘density’
ns Scalar spectral index
r Tensor-to-scalar ratio
nt Tensor spectral index
σ8 Spectrum normalization
τ Optical depth from reionization
fν Neutrino mass fraction

Table 2. Constraints on the basic 6-parameter model (flat; no tensors) from
WMAP+SPT in combination with large-scale structure (from Lowell et al. 2012
arxiv:1210.7231).

Parameter WMAP + SPT + LSS
σ8 0.827± 0.015
τ 0.076± 0.012
ns 0.952± 0.008
ωb 0.0220± 0.003
ωm 0.117± 0.002
h 0.691± 0.009

⇒ Ωm 0.291± 0.011

The impressive thing here is the specification of a relatively low optical depth
due to reionization, leading to evidence in favour of ns < 1; exact scale-invariance would
need a larger optical depth, and thus stronger large-scale polarization than observed.
The detection of tilt (a roughly 6σ rejection of the ns = 1 model) has to be considered
an impressive success for inflation, given that such deviations from scale invariance were
a clear prediction. So should we consider inflation to be proved? Perhaps not yet, but
one is certainly encouraged to look more closely at the tensor signal.

limits on the tensor fraction The possibility of a large tensor component
yields additional degeneracies, as shown in figure 35. An ns = 1 model with a large
tensor component can be made to resemble a zero-tensor model with large blue tilt
(ns > 1) and high baryon content. this is only weakly broken with current data, as
shown in figure 35. This illustrates that we cannot be sure about the ‘detection’ of tilt:
the data can be well matched with ns = 1, but then a substantial tensor fraction is
needed.

So far, the tensor contribution to the large-angle anisotropy power spectrum is
limited to a fraction r <∼ 0.15. To do much better, we need to detect the characteristic
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Figure 35. The tensor degeneracy. Adding a large tensor component
to an ns = 1 scalar model (solid line) greatly lowers the peak (dashed
line), once COBE normalization is imposed. Tilting to ns = 1.3 cures
this (dot-dashed line), but the 2nd and subsequent harmonics are too
high. Raising the baryon density by a factor 1.5 (dotted line) leaves us
approximately back where we started.

‘B-mode’ polarization. The B modes are excited only by tensors, so all future large-
scale polarization experiments will be searching for this signature; it will not be easy,
even if the foregrounds are gentle. Planck will only be able to detect tensors if r >∼ 0.1,
although the ultimate limit from cosmic variance is more like r ≃ 10−5. This sounds like
there is a lot of future scope, but it should be recalled that the energy scale of inflation
scales as the tensor C

1/4
ℓ . Therefore, we will need a degree of luck with the energy scale

if there is to be a detection.
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Figure 36. The marginalized confidence contours on the inflationary
r − n plane (from Lowell et al. 2012 arxiv:1210.7231), using CMB data
from WMAP+SPT plus constraints from large-scale structure. Not only
is the simple scale-invariant zero-tensor model hugely disfavoured, but all
simple power-law inflationary models are in trouble (prior to 2012, φ4

inflation was ruled out, but φ2 inflation matched the data well).

12 The puzzle of dark energy

12.1 Cosmological effects of the vacuum

One of the most radical conclusions of recent cosmological research has been the
necessity for a non-zero vacuum density. This was detected on the assumption that
Einstein’s cosmological constant, Λ, might contribute to the energy budget of the
universe. But if this ingredient is a reality, it raises many questions about the physical
origin of the vacuum energy; as we will see, a variety of models may lead to something
similar in effect to Λ, and the general term dark energy is used to describe these.

The properties of dark energy can be probed by the same means that we used
to deduce its existence in the first place: via its effect on the expansion history of the
universe. The vacuum density is included in the Friedmann equation, independent of
the equation of state

Ṙ2 − 8πG

3
ρR2 = −kc2. (339)
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At the outset, then we should be very clear that the deduced existence of dark energy
depends on the correctness of the Friedmann equation, and this is not guaranteed.
Possibly we have the wrong theory of gravity, and we have to replace the Friedmann
equation by something else. Alternative models do exist, particularly in the context
of extra dimensions, and these must be borne in mind. Nevertheless, as a practical
framework, it makes sense to stick with the Friedmann equation and see if we can get
consistent results. If this programme fails, we may be led in the direction of more radical
change.

To insert vacuum energy into the Friedmann equation, we need the equation of
state

w ≡ p/ρ c2 (340)

If this is constant, adiabatic expansion of the vacuum gives

8πGρ

3H2
0

= Ωva
−3(w+1). (341)

More generally, we can allow w to vary; in this case, we should regard −3(w + 1) as
d ln ρ/d ln a, so that

8πGρ

3H2
0

= Ωv exp

(
∫

−3(w(a) + 1) d ln a

)

. (342)

In general, we therefore need

H2(a) = H2
0

[

Ωve
∫

−3(w(a)+1) d ln a +Ωma
−3 +Ωra

−4 − (Ω− 1)a−2
]

. (343)

Some complete dynamical model is needed to calculate w(a). Given the lack of a unique
model, a common empirical parameterization is

w(a) = w0 + wa(1− a). (344)

Frequently it is sufficient to stick with constant w; most experiments are sensitive to
w at a particular redshift of order unity, and w at this redshift can be estimated with
little dependence on whether we allow dw/dz to be non-zero.

If w is negative at all, this leads to models that become progressively more
vacuum-dominated as time goes by. When this process is complete, the scale factor
should vary as a power of time. The case w < −1 is particularly interesting,
sometimes known as phantom dark energy. Here the vacuum energy density
will eventually diverge, which has two consequences: this singularity happens in a finite
time, rather than asymptotically; as it does so, vacuum repulsion will overcome the
normal electromagnetic binding force of matter, so that all objects will be torn apart in
the big rip. Integrating the Friedmann equation forward, ignoring the current matter
density, the time to this event is

trip − t0 ≃ 2

3
H−1

0 |1 + w|−1(1− Ωm)−1/2. (345)
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Figure 37. Perturbation around Ωm = 0.25 of distance-redshift and
growth-redshift relations. Solid line shows the effect of increase in w;
dashed line the effect of increase in Ωm

observable effects of the vacuum The comoving distance-redshift relation
is one of the chief diagnostics of w. The general definition is

D ≡ R0r =

∫ z

0

c

H(z)
dz. (346)

Perturbing this about a fiducial Ωm = 0.25 w = −1 model shows a sensitivity
multiplier of about 5 – i.e. a measurement of w to 10% requires D to 2%. Also,
there is a near-perfect degeneracy with Ωm, so this parameter must be known very well
before the effect of varying w becomes detectable.

The other main diagnostic of w is its effect on the growth of density perturbations.
These are also sensitive to the vacuum, as may be seen from the growth equation:

δ̈ + 2
ȧ

a
δ̇ = 4πGρ0δ. (347)

The vacuum energy manifests itself in the factor of H in the ‘Hubble drag’ term
2(ȧ/a)δ̇. For flat models with w = −1, we have seen that the growing mode for density
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perturbations is approximately as g(a) ∝ aΩ(a)0.23. If w is made more negative, this
makes the growth law closer to the Einstein–de Sitter g(a) ∝ a (for very large negative
w, the vacuum was unimportant until very recently). Therefore, increasing w (making
it less negative) has an effect in the same sense as decreasing Ωm. As shown in figure
37, the degeneracy between variations in Ωm and w thus has the opposite sign to the
degeneracy in D(z). Ideally, one would therefore try to observe both effects.

12.2 Observing the properties of dark energy

What are the best ways to measure w? We have seen that the two main signatures
are alterations to the distance-redshift relation and the perturbation growth rate. It is
possible to use both of these effects in the framework we have been discussing: observing
the perturbed universe in both the CMB and large-scale structure.

In the CMB, the main observable is the angle subtended by the horizon at last
scattering

θH = D(zLS)/D(z = 0). (348)

This has the approximate scaling with cosmological parameters (for a flat universe)

θH ∝ (Ωmh
3.3)0.15Ωα−0.4

m ; α(w) = −2w/(1− 3.8w). (349)

The latter term comes from a convenient approximation for the current horizon size:

D0 = 2
c

H0
Ω−α(w)

m . (350)

At first sight, this looks bad: the single observable of the horizon angle depends on three
parameters (four, if we permit curvature). Thus, even in a flat model, we can only pin
down w if we know both Ωm and h.

However, if we have more detail on the CMB than just the main peak location,
then we have seen that the Ωm−h degeneracy is weakly broken, and that this situation
improves with information from large-scale structure, which yields an estimate of Ωmh.
In effect, we have two constraints on the Ωm−h plane that are consistent if w = −1, but
this is not the case for other values of w. In this way, the current combined constraints
from CMB plus alternative probes (LSS and the Supernova Hubble diagram) yield an
impressive accuracy:

w = −0.926+0.054
−0.053, (351)

for a spatially flat model – see Spergel et al. (2006). The confidence contours are plotted
in detail in figure 38, and it is clear that so far there is very good consistency with a
simple cosmological constant. But as we will see, plenty of models exist in which some
deviation is predicted. The next goal of the global cosmology community is therefore
to push the errors on w down substantially – to about 1%. There is no guarantee that
this will yield any signal, but certainly it will cut down the range of viable models for
dark energy.
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Figure 38. The marginalized WMAP3 confidence contours on the
plane of dark-energy equation of state (w) vs Ωm (from Spergel et al.
2006). A flat universe is assumed, although this is not critical to the
conclusions.

One of the future tools for improving the accuracy in w will be large-scale
structure. We have seen how this helps pin down the parameter degeneracies inherent in
a CMB-only analysis, but it also contains unique information from the acoustic horizon.
Earlier, we approximated this without considering how the speed of sound would depend
on the baryon density; a good approximation to the exact result is

Da ≃ 60 (Ωmh
2)−0.25(Ωbh

2)−0.08 Mpc. (352)

This forms a standard measuring rod, as seen in the ‘baryon wiggles’ in the galaxy power
spectrum. In future galaxy surveys, the measurement of this signature as a function of
redshift will be a further useful geometrical probe.

The amplitude constraint from the CMB has been harder to implement.
Although WMAP provides an accurately determined normalization, it involves the
uncertain optical depth due to reionization:

σ8(CMB) = 0.75(Ωm/0.3)
+0.4 exp(τ)± 4%. (353)
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The value of τ is constrained by large-angle polarization data, and lies close to 0.1
according to WMAP. The current accuracy would be useful if we had an accurate
independent estimate of σ8. This can be attempted using the abundance of clusters of
galaxies and also gravitational lensing, although the test is not really properly mature
as yet.

12.3 Quintessence

The simplest physical model for dynamical vacuum energy is a scalar field. We
know from inflationary models that this can yield something close in properties to a
cosmological constant, and so we can immediately borrow the whole apparatus for
modelling vacuum energy at late times. This idea of scalar fields as a dynamical
substitute for Λ was first explored by Ratra & Peebles (1988). Of course, this means yet
another scalar field that is introduced without much or any motivation from fundamental
physics. This hypothetical field is given the fanciful name ‘quintessence’, implying a new
addition to the ancient Greek list of elements (fire, air, earth, water).

The Lagrangian density for a scalar field is as usual of the form of a kinetic minus
a potential term:

L = 1
2∂µφ∂

µφ− V (φ). (354)

In familiar examples of quantum fields, the potential would be

V (φ) = 1
2 m

2 φ2, (355)

where m is the mass of the field. However, as before we keep the potential function
general at this stage.

Suppose the Lagrangian has no explicit dependence on spacetime (i.e. it depends
on xµ only implicitly through the fields and their 4-derivatives). Noether’s theorem then
gives the energy–momentum tensor for the field as

Tµν = ∂µφ∂νφ− gµνL. (356)

From this, we can read off the energy density and pressure:

ρ = 1
2 φ̇

2 + V (φ) + 1
2 (∇φ)

2

p = 1
2 φ̇

2 − V (φ)− 1
6 (∇φ)

2.
(357)

If the field is constant both spatially and temporally, the equation of state is then
p = −ρ, as required if the scalar field is to act as a cosmological constant; note that
derivatives of the field spoil this identification.

For a homogeneous field, we have the equation of motion

φ̈+ 3Hφ̇+ dV/dφ = 0, (358)
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which is most easily derived via energy conservation:

d ln ρ

d ln a
= −3(1 + w) = −3φ̇2/(φ̇2/2 + V ), (359)

following which the relations H = d ln a/dt and V̇ = φ̇V ′ can be used to change variables
to t, and the damped oscillator equation for φ follows. The solution of the equation of
motion becomes tractable if we make the slow-rolling approximation that |φ̈| is
negligible in comparison with |3Hφ̇| and |dV/dφ|, so that

3Hφ̇ = −dV/dφ. (360)

From this, we know that a sufficiently flat potential can provide a dynamical vacuum
that is arbitrarily close to a cosmological constant in its equation of state. However,
there are good reasons why we might want to imagine the slow-roll conditions being
violated in the case of dark energy.

cosmic coincidence and quintessence Accepting the reality of vacuum
energy raises a difficult question. If the universe contains a constant vacuum density and
normal matter with ρ ∝ a−3, there is a unique epoch at which these two contributions
cross over, and we seem to be living near to that time. This coincidence calls for some
explanation.

We already have one coincidence, in that we live relatively close in time to the era
of matter-radiation equality (z ∼ 103, as opposed to z ∼ 1028 for the GUT era). This is
relatively simple to understand: structure formation cannot begin until after zeq, and
so we would expect observers to appear before the universe has expanded much beyond
this point. The vacuum coincidence problem could therefore be solved if the vacuum
density was some dynamical entity that was triggered to become Λ-like by the change in
expansion history at zeq. Zlatev, Wang & Steinhardt (1999) suggested how this might
happen. We have seen that the density and pressure for a quintessence field will be

ρφ = φ̇2/2 + V

pφ = φ̇2/2− V.
(361)

This gives us two extreme equations of state: (i) vacuum-dominated, with V ≫ φ̇2/2,
so that p = −ρ; (ii) kinetic-dominated, with V ≪ φ̇2/2, so that p = ρ. In the first
case, we know that ρ does not alter as the universe expands, so the vacuum rapidly
tends to dominate over normal matter. In the second case, the equation of state is the
unusual Γ = 2, so we get the rapid behaviour ρ ∝ a−6. If a quintessence-dominated
universe starts off with a large kinetic term relative to the potential, it may seem that
things should always evolve in the direction of being potential-dominated. However,
this ignores the detailed dynamics of the situation: for a suitable choice of potential, it
is possible to have a tracker field, in which the kinetic and potential terms remain
in a constant proportion, so that we can have ρ ∝ a−α, where α can be anything we
choose.
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Putting this condition in the equation of motion shows that the potential is
required to be exponential in form. The Friedmann equation with ρ ∝ a−α requires
a ∝ t2/α, so we have ρ ∝ t−2 as usual. But now both V and φ̇2 must scale in the same
way as ρ, so that φ̇ ∝ 1/t. Both the φ̈ and 3Hφ̇ terms are therefore proportional to
V , so an exponential potential solves the equation of motion. More importantly, we
can generalize to the case where the universe contains scalar field and ordinary matter.
Suppose the latter obeys ρm ∝ a−α; it is then possible to have the scalar-field density
obeying the same ρ ∝ a−α law, provided

V (φ) =
2M4

λ2
(6/α− 1) exp[−λφ/M ], (362)

where M = mP/
√
8π. The scalar-field density is ρφ = (α/λ2)ρtotal. (see e.g. Liddle &

Scherrer 1999). The impressive thing about this solution is that the quintessence density
stays a fixed fraction of the total, whatever the overall equation of state: it automatically
scales as a−4 at early times, switching to a−3 after matter-radiation equality.

This is not quite what we need, but it shows how the effect of the overall equation
of state can affect the rolling field. Because of the 3Hφ̇ term in the equation of motion,
φ ‘knows’ whether or not the universe is matter dominated. This suggests that a more
complicated potential than the exponential may allow the arrival of matter domination
to trigger the desired Λ-like behaviour. Zlatev, Wang & Steinhardt suggested two
potentials which might achieve this:

V (φ) =M4+βφ−β or V(φ) = M4[exp(mP/φ)− 1]. (363)

They show that these can yield an evolution in w(t) so that it switches from w ≃ 1/3
in the radiation era to w ≃ −1 today.

However, a degree of fine-tuning is still required, in that the trick only works
for M ∼ 1 meV, so there is no natural reason for tracking to cease at matter-
radiation equality. The idea of tracker fields thus does not remove completely the
puzzle concerning the level of present-day vacuum energy. But such models are at least
testable: because the Λ-like behaviour only switches on quite recently, it is hard to
complete the transition, and the prediction is of something around w ≃ −0.8 today. As
we have seen, this can be firmly ruled out with current data. These ideas about the
dynamical vacuum are therefore already interesting testable science.

k-essence In a sense, quintessence is only half the story. We started with the
usual Lagrangian for a simple massive scalar field, L = φ̇2/2−m2φ2/2 and generalized
the quadratic mass term to an arbitrary potential, V (φ). Why not take the same
liberties with the kinetic term? Even though such k-essence models lack the intuitive
analogies of quintessence, a Lagrangian can be anything we like. The simplest models
try to express things in terms of the normal kinetic expression

X ≡ ∂µφ∂µφ/2, (364)

and one assumes that

L = K(φ)f(X) (365)
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In the homogeneous case, X = φ̇2/2.

The pressure and density are

ρ = 2XL,X − L
P = L (366)

so that the equation of state is

w =
f

2Xdf/dX − f
. (367)

For a normal kinetic term, this gives w = +1 if there is no potential. The equation of
motion is derived just by writing conservation of energy as for quintessence:

d ln ρ

d ln a
= −3(1 + w). (368)

What sort of k-essence Lagrangian will yield tracking? We want to fix w at the
value of the dominant component, which requires

d ln f

d lnX
= (1 + 1/w)/2 ⇒ f(X) ∝ X(1+1/w)/2. (369)

Thus, a Lagrangian proportional to the square of the usual kinetic term will produce
tracking during the radiation era, but tracking in the matter era requires a step to
f(X) = 0 to be encountered just as the universe becomes matter dominated. This
is the opposite to the case of quintessence: now fine-tuning would be required in
order for tracking to be maintained. The real question is whether a simple model can
achieve sufficiently strong departure from tracking to get somewhere close to w = −1
in the matter era in an inevitable way. This seems to be controversial: Armendariz-
Picon, Mukhanov & Steinhardt (0006373) claimed that it could be done, but Malquarti,
Copeland & Liddle (0304277) disagreed. The issue, as with quintessence, is the extent
to which a tracking solution arises inevitably independent of initial conditions – i.e.
whether it is an attractor. This has certainly not been demonstrated.

perturbations in the vacuum In dynamical models for the vacuum, we have
a peculiar kind of fluid, so it is able to respond to gravity and grow inhomogeneities.
The key parameter here is the vacuum sound speed, which obeys the usual relation

c2s =
∂p

∂ρ
. (370)

In practice, this is evaluated as

c2s =
∂p/∂X

∂ρ/∂X
(371)
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i.e. ignoring perturbations in the field. The justification for this is that a gauge freedom
exists, and that δφ = 0 corresponds to the rest-frame of the vacuum fluid.

This means that, for quintessence, the sound speed is always cs = c. Even a
completely flat potential with initial condition φ̇ = 0 does not mimic a cosmological
constant. This only happens if the Lagrangian is set up completely lacking any kinetic
term. The low sound speeds in some k-essence models can have quite large effects on
the CMB anisotropies, and so can be probed observationally beyond just w and its
evolution.

scalar fields as dark matter One interesting limit of the scalar-field equa-
tion is if the ‘acceleration’ from the potential exceeds the Hubble drag (i.e. the universe
expands sufficiently slowly that this term can be neglected). If we further assume that
the potential is mass-like (or at least parabolic near its minimum), then we have the
simple oscillator equation φ̈+m2φ = 0, with solution φ = A sinmt (for a suitable origin
of time). The density and pressure are

ρ = m2A2/2

p = (m2A2/2) cos 2mt.
(372)

Therefore, averaged over many cycles, the oscillating scalar field has the equation of
state of pressureless matter.

It is therefore possible that the cosmological dark matter may take the form of a
light scalar field rather than a supersymmetric relic WIMP. This scalar-field dark matter
is normally considered to be a particle called the Axion, which has some motivation
in particle physics. Notice that the mass can in principle be anything, since the density
depends on m and on the field amplitude, A. In practice, other constraints on the axion
model focus attention on

maxion ∼ 10−5 eV. (373)

This is very light dark matter indeed, so surely it should be very hot and fail to make
Ω ∼ 1 by a large factor? This is not so: the axion will act as cold dark matter,
and can have a significant relic density. The answer to the apparent paradox is that
these particles should not be thought of as having been in thermal equilibrium. We
are dealing with a classical field that interacts extremely weakly with ordinary matter.
If this interaction was zero, there would be no prospect of detecting the axion other
than via cosmology. In practice, as with WIMPs, there is some level of interaction,
but the strategy for detection is completely different: the axion can interact with
electromagnetic waves, and the low mass means that microwave frequencies are involved.
There is therefore an active experimental programme searching for the axion using tuned
microwave cavities. The problem is that for sensitivity reasons the bandwidth needs
to be very narrow, and it takes a long time to scan an interesting frequency range:
probably the axion model will be fully explored and ruled out within the next decade –
or it could be detected any day now.
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12.4 Modifying gravity

An alternative point of view on dark energy, which is receiving increasing interest in the
research literature is to suggest that dark energy may not be a genuine physical entity
at all. All our current knowledge about it comes from the Friedmann equation:

H2(a) = H2
0

[

Ωma
−3 +Ωra

−4 − (Ω− 1)a−2 +Ωv

]

. (374)

In other words, the expansion history of the universe cannot be satisfied without adding
a constant to the rhs. But this could mean that the standard Friedmann equation was
wrong all along and that the presence of the constant indicates the need for changes to
the theory of gravity.

This possibility is frequently termed ‘violation of general relativity’, but one
should be clear at the outset that this is a misnomer: general relativity means assuming
the existence of a metric and writing physics equations in covariant form, most simply
by using relativistic invariants. Einstein’s field equations are the simplest set consistent
with this requirement, but are easy to generalise. This is most easily seen by using the
Lagrangian formalism and writing the Einstein-Hilbert action:

S ∝
∫

(R+ 2Λ)
√−g d4xµ, (375)

where R is the Ricci scalar. Einstein’s field equations arise from requiring a stationary
action, and it is now obvious how to generate a more complex theory: replace R+Λ by
some other scalar; a popular choice is f(R). This substitution has to be done with care,
however, since there exist stringent constraints on deviations from Einstein gravity in
the Solar System. The value of R is proportional to the matter density, which is about
106 times larger in interplanetary space than on cosmological scales. Thus what is
required empirically is f(R) ≃ R when R is large, but f(R) → constant as R→ 0. One
might legitimately ask whether it is plausible that nature should carefully make sure
that modifications of gravity are locally undetectable in this way.

A further popular way in which gravity might have non-standard properties
is if the universe has more than the normal 3+1 spacetime dimensions. This was
first introduced in the Kaluza-Klein picture, in which our universe is a lower-
dimensional hypersurface in a higher-dimensional system. Such models were first
discussed in the 1920s, and the device chosen to hide the extra dimensions was that
they were compactified and have the topology of a very small cylinder in the hidden
direction(s). A more recent development has been the brane world model, in which
the extra dimension is not assumed to be small. There is then a larger space, termed
the bulk, which lies away from the (mem)brane on which our universe is located. If
Einstein gravity applies to the joint space of bulk and brane, and matter is confined
only to the brane, then it has been shown that the apparent Friedmann equation on the
Brane is of the form

H2(a) ∝ ρ2 + C/a4. (376)

This quadratic dependence on density is startling and inconsistent with nucleosynthesis,
whatever the value of the dark radiation term parameterized by C. More realistic
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brane models allow a bulk cosmological constant, so that the metric is warped and no
longer of the form dτ2 = gµνdx

µdxν − dw2. These generalized brane models are known
as Randall-Sundrum models.

This may all seem pointless if the aim is simply to come up with an alternative
model that gives an expansion history a(t) that is just like the standard case with
matter plus dark energy. But more recent work has emphasised that it is possible
to tell the difference by looking at the growth of structure. Informally speaking, we
are exploring the possibility that gravity may have a different strength on the 10-Gpc
scale of the entire visible universe than it does on small scales. Here, ‘small scales’
can mean as large as the kpc scales of galaxies, since the central parts of these can be
explained dynamically using standard gravity and no dark matter. We stress that the
aim here is to dispose of dark energy, not dark matter: that is the subject of a more
radical programme known as MOND, or Modified Newtonian Dynamics. There is
then the possibility that the behaviour on the intermediate 10-Mpc scales of large-scale
structure may be a diagnostic of modified gravity. An empirical parameterization has
been developed to deal with this:

fg ≡ d ln δ

d ln a
≃ Ωm(a)γ . (377)

The standard model is well fitted by γ ≃ 0.55, but many of the modified models discussed
above require values of γ that differ from this by of order 0.1. The parameter γ thus
forms one natural target for observers, to be added to w as an empirical description of
fundamental cosmology. To complete the set, we note that gravitational lensing adds a
specific degree of freedom in that it is able to probe the sum of the two metric potentials,
Ψ + Φ:

η = Φ/Ψ. (378)

A large number of future cosmological surveys are thus gearing up to measure these
parameters and search for deviations from (w, γ, η) = (−1, 0.55, 1). Whether or not one
expects this search to succeed, is is undeniably good for science that cosmology is able
to test the correctness of Einstein gravity, rather than simply assuming it.

12.5 The anthropic landscape

Whether or not one finds the ‘essence’ approach to dark energy compelling, there
remains one big problem. All the models are constructed using Lagrangians with a
particular zero level. All quintessence potentials have the field rolling down towards
V = 0, and k-essence models lack a potential altogether. They are therefore subject
to the classical dilemma of the cosmological constant: adding a pure constant to the
Lagrangian has no affect on field dynamics, but mimics a cosmological constant. With
so many possible contributions to this vacuum energy from the zero-point energies of
different fields (if nothing else), it seems contrived to force V (φ) to asymptote to zero
without a reason.
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To review why zero is a problematic value for the vacuum density, recall what
we mean by the vacuum: |0〉, or zero occupation number for each wave mode inside
a given box. But standard quantum mechanics assigns a zero-point energy of h̄ω/2
to each mode. Integrating h̄ω/2c2 per mode over k-space (with a degeneracy of 2 for
polarization) gives a total density of

ρvac =
h̄

2π2c5

∫

ω3 dω, (379)

which diverges horribly. Is it possible that the upper limit of the integral should be
finite? This would be the case if space were a lattice, which is perhaps conceivable on
some unobservably small scale. However, even with a cutoff at the hardly microscopic
level of λ ∼ 1 mm, ρvac already exceeds the critical density of the universe (∼
10−26kgm−3). We can express things in terms of an energy scale Ev by writing the
dimensional scaling

ρv =
h̄

c

(

Ev

h̄c

)4

, (380)

or simply ρv = E4
v in natural units. if we adopt the values Ωv = 0.75 and h = 0.73

for the key cosmological parameters, then Ev = 2.39 meV is known to a tolerance of
about 1%. What is a natural choice for Ev? A case can be made for Ev lying at the
Planck scale, since quantum gravity effects must destroy the flat-space assumptions of
quantum field theory. This would give a vacuum density 120 power of 10 larger than
observed. But this is over-dramatising the problem: one should focus on Ev rather than
E4

v . Also, the solution may lurk at much smaller energies. In unbroken supersymmetry,
there would be an exact cancellation of the zero point energy of bosonic and fermionic
oscillators, and the scale of supersymmetry breaking could be as low as 10 TeV. So the
vacuum problem is perhaps that the energy scale of the vacuum is ‘only’ 15 powers of
10 smaller than seems reasonable – a lot fewer than 120 powers of 10, but still enough
to cause a problem.

It should however be clear that this prediction is hard to make fixed, partly
because of our ignorance of the field content of the universe, and because these zero-point
contributions can be supplemented by classical contributions from V (φ) of any number
of scalar fields. This problem has been sharpened by recent developments in string
theory, known under the heading of the landscape. For the present purpose, this can
be regarded as requiring the introduction of a large number of additional scalar fields,
each with an associated potential. If we assume that a vacuum state is defined by these
fields sitting at the minimum of their various potentials, then the effective cosmological
constant can vary. It has been estimated that there are about 10500 distinct minima,
which divides the natural vacuum density of E4

P
into what is almost a continuous range

from the point of view of observations – so we can have almost any effective value of Λ
we like.

This leads us in the direction of anthropic arguments, which are able to limit Λ to
some extent: if the universe had become vacuum-dominated at z > 1000, gravitational
instability would have been impossible – so that galaxies, stars and observers would not
have been possible (Weinberg 1989). Indeed, Weinberg made the astonishingly prescient
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prediction on this basis that a non-zero vacuum density would be detected at Ωv of order
unity, since there was no reason for it to be much smaller.

many universes At first sight, this argument seems quite appealing, but it rapidly
leads us into deep waters. How can we talk about changing Λ? It has the value that
it has. We are implicitly invoking an ensemble picture in which there are many
universes with differing properties. This is a big step (although exciting, if this turns
out to be the only way to explain the vacuum level we see). In fact, the idea of an
ensemble emerges inevitably from the framework of inflationary cosmology, since the
fluctuations in the scalar field can affect the progress of inflation itself. We have used
this idea to look at the changes in when inflation ends – but fluctuations can affect the
field at all stages of its evolution. They can be thought of as adding a random-walk
element to the classical rolling of the scalar field down the trough defined by V (φ). In
cases where φ is too close to the origin for inflation to persist for sufficiently long, it is
possible for the quantum fluctuations to push φ further out – creating further inflation
in a self-sustaining process. This is the concept of stochastic eternal inflation
due to Linde. Sufficiently far from the origin, the random walk effect of fluctuations
becomes more marked and can overwhelm the classical downhill rolling. This means that
some regions of space can inflate for an indefinite time, and a single inflating universe
automatically breaks up into different bubbles with their own histories. Some random
subset of these eventually random-walk close enough to the origin that the classical end
of inflation can occur, thus creating a set of ‘universes’ each of which can potentially
host observers.

With this as a starting point, the question now becomes whether we can arrange
for the different members of this ensemble to have different values of Λ. This is easily
achieved. Let there be some quintessence field with a very flat potential, so that it
is capable of simulating Λ effectively. Quantum fluctuations during inflation can also
displace this field, so that each member of the multiverse would have a different Λ.

the distribution of Λ We are now almost in a position to calculate a probability
distribution for Λ. First, we have to set some ground rules: what will vary and what
will be held fixed? We should try to change as little as possible, so we assume that all
universes have the same values for

(1) The Baryon fraction fb = ρb/ρm.

(2) The entropy per particle S = (T/2.73)3/Ωmh
2

(3) The horizon-scale inhomogeneity δH ≃ 10−5.

It is far from clear that these minimal assumptions are correct. For example, in
the string theory landscape, there is no unique form for low-energy particle physics,
but instead a large number of possibilities in which numbers such as the fine-structure
constant, neutrino masses etc. are different. From the point of view of understanding
Λ, we need there to be at least 10100 possible states so that at least some have Λ smaller
than the natural m4

p
density by a sufficient factor. The landscape hypothesis provides
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this variation in Λ, but does not support the idea that particle physics is otherwise
invariant. Still, it makes sense to start with the simplest forms of anthropic variation:
if this can be ruled out, it might be taken as evidence in favour of the fuller landscape
picture.

We then take a Bayesian viewpoint to the distribution of Λ given the existence
of observers:

P (Λ | Observer) ∝ Pprior(Λ)P (Observer | Λ), (381)

where we need both the prior distribution of Λ between different members of the
ensemble and how the chance of getting an observer is modified by Λ. The latter factor
should be proportional to the number of stars, which is generally take to be proportional
to the fraction of the baryons that are incorporated into nonlinear structures. We
can estimate this using the Press-Schechter apparatus to get the collapse fraction into
systems of a galaxy-scale mass. The exact definition of this is not very important, since
the CDM power spectrum is very flat on small scales: any mass at all close to 1012M⊙

gives similar answers.

The more difficult part is the prior distribution of Λ, and a common argument
is to say that it has a uniform distribution – which seems reasonable enough if we are
to allow it to have either sign, but know that we will be interested in a very small
range near zero. This is the startling proposition of the anthropic model: the vacuum
density takes large ranges, and in almost all realizations, the values are comparable in
magnitude to the natural scale m4

P
; such models are stupendously inimical to life.

We therefore have the simple model

dP (ρv) ∝ fc dρv, (382)

where fc is the collapse fraction into galaxy-scale objects. For large values of Λ, growth
ceases at high redshift, and fc is exponentially suppressed. But things are less clear-cut
if Λ < 0. Here the universe eventually recollapses, and the high density means that the
collapse fraction always tends to unity. So why do we not observe Λ < 0? The answer
is that we have to cut off the calculation at late stages of recollapse: once the universe
becomes too hot, star-formation may be affected and in any case there is little time for
life to form.

With this proviso, figure 39 shows the posterior distribution of Λ conditional
on the existence of observers in the multiverse. Provided we consider recollapse only
to a maximum temperature of about 10 K, the observed figure is matched well by
the anthropic prediction: with this cutoff, most observers will see a positive Λ, and
something of order 10% of observers will see Λ as big as we do, or smaller.

So is the anthropic explanation the correct one? Many people find the hypothesis
too radical: why postulate an infinity of universes in order to explain a detail of one of
them? Certainly, if an alternative explanation for the ‘why now’ problem existed in the
form of e.g. a naturally successful quintessence model, one might tend to prefer that.
But so far, there is no such alternative. The longer this situation persists, the more
we will be forced to accept that the universe we see can only be understood by making
proper allowance for our role as observers.
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Figure 39. The collapse fraction as a function of the vacuum density,
which is assumed to give the relative weighting of different models. The
dashed line for negative density corresponds to the expanding phase only,
whereas the solid lines for negative density include the recollapse phase,
up to maximum temperatures of 10 K, 20 K, 30 K.
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Problems

(1) The North and South Hubble Deep Fields are two small patches that lie in opposite
directions on the sky, and which contain statistically identical galaxy populations. Show
that, in a flat vacuum-dominated cosmology, there are critical redshifts beyond which
galaxies that we can observe in the two Hubble Deep Fields have not established causal
contact (a) by the present day; (b) by the time at which the light we now see was
emitted. Considering the following table of comoving distances for a flat Ωm = 0.25
model, estimate these redshifts.

z D(z)/h−1 Mpc

0.5 1345
1 2385
1.5 3178
2 3795
3 4690
5 5775
10 7051
∞ 10666

(2) For the case of a flat universe containing only matter and a cosmological constant,
show that the current age of the universe is

H0t0 =
2

3
(1− Ωm)

−1/2
arcsinh

[

(

Ω−1
m − 1

)1/2
]

(383)

(use the substitution y = (1+ z)−3/2). This expression can be accurately approximated
by H0t0 = (2/3)Ω−0.3

m . By calculating the Hubble parameter and density parameter at
non-zero redshift, show how this approximate expression can be extended to give the
age of the universe at redshift z. Galaxies are known to exist at redshift 1.6 whose
stellar populations are 3 Gyr old; what limit on H0 would be required in order for this
observation to provide evidence for vacuum energy, on the assumption that the universe
is flat?

(3) From the definition 1 + z = 1/a(t), we can deduce dz/dt = −(1 + z)H(z). But
here, tmeans look-back time: the change in cosmological time coordinate along a photon
trajectory. But if we watch a distant object, its observed redshift will change as the
expansion of the universe progresses. Show that

dzobs
dtobs

= (1 + z)H0 −H(z). (384)

For flat vacuum-dominated models, discuss the sign and magnitude of the effect. Apart
from sheer instrumental precision, why might this be hard to detect?

(4) Consider inflation driven by a single real scalar field, φ. Write down the exact
equations for the time dependence of φ, and for the time dependence of the scale factor,
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a, in a universe containing only the inflaton. For a potential V (φ) ∝ φα, show that the
solution to the slow-roll equation is

φ/φinitial = (1− t/tfinal)
1/β

, (385)

where β = 2− α/2. Explain why this equation does not hold near φ = 0.

(5) Consider an inflaton potential of the form of a double well:

V (φ) =
λ

4
(φ2 − v2)2. (386)

Assuming an initial condition φ = φi at t = 0, where φi is small and positive, show that
the slow-roll equations have the solution

φ(t) = φi exp(t/τ), (387)

and give an expression for the timescale τ .

(b) Show that slow-roll inflation will not proceed unless the parameter v is ≫ mP, in
which case inflation is expected to end very near to |φ| = v.

(c) Observed large-scale perturbations today exited the inflationary horizon N ≃ 60
e-foldings prior to the end of inflation. Derive an expression for N , and show that there
are two possible situations, depending on whether or not v/mP is large compared to
N/2π.

(d) If v is large enough, show that observed scales also exited the horizon close to φ = v.
Since the potential is parabolic at this point, argue that the inflationary properties must
be the same as for a V = m2φ2 potential, i.e. r = 4(1− n) = 16/(2N + 1).

(e) If v is only modestly larger than mP, show that observed scales exited the horizon
at φ≪ v, and that the predicted level of gravity waves is therefore low:

r = 16(1− n)e−[N(1−n)+1]. (388)

(6) At last scattering, z = 1100, an adiabatic density perturbation exists in the form
of a uniform sphere of comoving radius 100h−1 Mpc, within which the density is 1.003
times the global mean. The universe is flat, with Ωm = 0.25.

(a) Calculate the observed temperature perturbation, under the assumption that
baryons and dark matter have the same density fluctuation. Why will this assumption
be inexact?

(b) Show that there is a radius for the sphere at which the temperature
perturbation would vanish, and calculate this critical radius.
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(c) The sphere will increase in density contrast as the universe expands, and
will eventually undergo gravitational collapse. Calculate the time at which this occurs,
expressed as a redshift. Would this be the observed redshift of the object?

(d) If the sphere undergoes no further mergers after collapse, estimate its internal
density contrast today.

(7) If the density field has a power spectrum |δk|2 = Akn, give an expression for the
variance in density that results when the density field is filtered by convolution with
a uniform sphere of radius R (dimensionless integrals need not be evaluated exactly).
For what values of the index n will the result be finite? How do the required limits
on n change if we require a finite variance in (a) gravitational potential; (b) peculiar
velocity?

(8) If we consider a proto-void with δ < 0, show that the parametric solution
for spherical inhomogeneities is still valid, provided that trigonometric functions are
replaced by their hyperbolic counterparts. Calculate the apparent Hubble parameter
and density parameter for observers who live within the proto-void, and show that
these are respectively larger and smaller than in the external Einstein-de Sitter universe.
Could such an effect mimic cosmic acceleration?

(9) If w < −1, show from the Friedmann equation that the scale factor diverges at a
finite time in the future. If the current matter density is neglected in comparison with
the vacuum density, show that the time to this event is approximately

t− t0 ≃ 2

3
H−1

0 |1 + w|−1Ω−1/2
v . (389)

(10) If the vacuum density is negative, prove that the expansion of the universe will
always result in a maximum for the scale factor, followed by collapse to a big crunch,
provided w < −1/3. For the case of a flat universe containing only matter and vacuum
with w = −1, show that the Friedmann equation may be written as ȧ2 = −a2+1/a with
a suitable choice of time unit. Thus derive the exact expression for a(t) and hence the
time of maximum expansion and the time of the big crunch. The substitution y = a3/2

should be useful.

Write down the integral for the relation between comoving distance and redshift.
Discuss the use of this relation at the time of maximum expansion in the above
recollapsing universe, and show that the leading dependence of redshift on distance
is quadratic in distance.

(11) One function of inflation is to stretch perturbations that cross the horizon scale
during inflation (c/Hinf) to a larger scale that can encompass the size (at reheating) of
our current Hubble radius c/H0. Assuming that inflation terminates suddenly, so that
the relativistic energy density at reheating is equal to that during inflation, calculate
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the required stretch factor. Show that your result can be expressed approximately as
ǫ1/4 exp(62) by using the fluctuation amplitude δH = H2

inf/2π|φ̇| and assuming that
slow-roll applies before the end of inflation. You may assume that relativistic energy
density scales exactly as a−4, plus the following numerical values in natural units:
H0 = 10−41.67 h GeV; present-day relativistic energy density = 10−50.48 GeV4.

(12) By considering conservation of energy, show that the the dependence of the
cosmic density on scale factor is d ln ρ/d ln a = −3(1 + w), where w ≡ P/ρc2 and P
is pressure. Hence derive an expression for R̈. If a ‘deceleration parameter’ is defined
via q ≡ −R̈R/Ṙ2, show that q = Ω(1 + 3w)/2, where Ω is the density parameter.

Show how the relation between comoving distance, D, and redshift, z, can be
calculated if the expansion history is known in the form H(z). If D(z) is expanded
in a Taylor series, explain why curvature only affects terms of order z3 and higher.
Thus show that the angle subtended by an object of proper diameter L is θ = L/D(z),
where D(z) ≃ (c/H0)(z−(3+q)z2/2) and q is the deceleration parameter defined above
(consider the Taylor series for H(z)).

(13) Consider a universe containing only pressureless matter, with a density above
critical. Show that such a universe will have a maximum scale factor, and hence
recollapses to a big crunch. Using the radial equation of motion for light, calculate
the particle horizon in such a universe at the point of maximum expansion, and hence
prove that a photon that sets off at the big bang just returns to its starting point at

the big crunch (
∫ 1

0
(x+ x2)−1/2 = π).

(14) Consider a universe containing pressureless matter and a cosmological constant.
Show that such a model can be non-expanding provided it is closed. If the universe
expands today with a given matter density parameter, use the two forms of the
Friedmann equation to derive an equation for the vacuum density parameter that would
yield a static non-expanding state in the infinite past. Verify that, if Ωm is ≪ 1, the
solution is approximately Ωv = 1 + 3(Ωm/2)

2/3. Thus give an approximate expression
for the maximum redshift that could be observed in such a universe, as a function of
Ωm.

(15) Give a rough estimate of the typical present-day peculiar velocity of a thermal
relic particle that decouples when it is relativistic. Express your answer as a function
of particle mass in eV. The typical energy of a CMB photon with T = 2.725 K is
kT = 0.000235 eV. How is this velocity changed if decoupling occurs when the particle
is non-relativistic? You may assume mc2/kT ≃ 10 at decoupling in this case.

(16) A collisionless relic particle moves at the speed of light, thus erasing all structure
up to scales of the horizon, until it becomes non-relativistic. Show that the resulting
free-streaming length, expressed in comoving units, is

Lfree−stream = 112 (m/eV)−1 Mpc. (390)
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(the radiation-dominated relation between time and temperature can be taken to be
t/s = (T/1010.13K)−2).

(17) The amplitude of inflationary metric fluctuations is δH = H2/(2πφ̇). Apply this
to ‘hilltop inflation’, with V = V0−µ2φ2, where inflation is presumed to end near φ = 0,
while µ2φ2 ≪ V0. If the parameter µ is not allowed to exceed the Planck scale, calculate
the maximum value of V0.
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