
Advanced Cosmology: Summer 2012

Section A: Answer two Questions

A.1

(a) The Robertson-Walker metric for an expanding universe can be written as

c2dτ 2 = c2dt2 −R2(t)(dr2 + S2

k(r)dψ
2).

Give the meaning of all terms, and write down the the Friedmann equation
obeyed by the scale factor, R(t). [4]

Show that, in the case of a closed universe, the spatial part of this metric is
identical to that of the surface of a sphere. Hence, or otherwise, argue that
radial coordinate r = 2π corresponds to the same spatial point as r = 0. [4]

(b) Consider a universe containing only pressureless matter, with a density above
critical. Show that such a universe will have a maximum scale factor, and hence
recollapses to a big crunch. [3]

Using the radial equation of motion for light, calculate the particle horizon in
such a universe at the point of maximum expansion, and hence prove that a
photon that sets off at the big bang just returns to its starting point at the big
crunch (you may assume that

∫

1

0
(x+ x2)−1/2 = π). [6]

(c) Consider a universe containing pressureless matter and a cosmological con-
stant. Show that such a model can be non-expanding provided it is closed. If
the universe expands today with a given matter density parameter, use the two
forms of the Friedmann equation to derive an equation for the vacuum density
parameter that would yield a static non-expanding state in the infinite past. Ver-
ify that, if Ωm is ≪ 1, the solution is approximately Ωv = 1 + 3(Ωm/2)2/3. Thus
give an approximate expression for the maximum redshift that could be observed
in such a universe, as a function of Ωm. [8]

A.2

(a) Explain what is meant by freezeout in cosmology, and give a discussion of how
the two main types of particle dark matter can arise in this way. How does the
relic density of dark matter with a neutrino-like cross-section depend on mass,
and what are the values of mass that yield the observed density? [6]

(b) A relic particle will have a proper peculiar velocity v, and the particle mo-
mentum is related to the energy, E, via p = v(E/c2), independent of whether or
not the particle is relativistic. When the particle moves a proper distance δx,
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it meets an observer with velocity δv = Hδx. Use a Lorentz transformation to
show that the change in momentum is δp/p = −δv(E/pc2), and hence that p
always scales ∝ 1/a(t), where a(t) is the cosmic scale factor. [6]

(c) Hence give a rough estimate of the typical present-day peculiar velocity of a
thermal relic particle that decouples when it is relativistic. Express your answer
as a function of particle mass in eV. The typical energy of a CMB photon with
T = 2.725 K is kT = 0.000235 eV. How is this velocity changed if decoupling
occurs when the particle is non-relativistic? You may assume mc2/kT ≃ 10 at
decoupling in this case. [6]

(d) A collisionless relic particle moves at the speed of light, thus erasing all
structure up to scales of the horizon, until it becomes non-relativistic. Show that
the resulting free-streaming length, expressed in comoving units, is

Lfree−stream = 112 (m/eV)−1 Mpc.

Discuss the observational constraints that can be placed on the mass of a relic par-
ticle using this relation. You may assume the following relation between time and
temperature while the universe is radiation-dominated: t/s = (T/1010.13K)−2. [7]

A.3 The equation of motion for a homogeneous scalar field evolving under the action
of a potential V (φ) is

φ̈+ 3Hφ̇+ dV/dφ = 0,

and the Hubble parameter is given by

H2 =
8π

3m2
P

(φ̇2/2 + V ).

(a) Explain how to solve these equations in the slow-roll limit. If the potential
is of the mass-like form V = m2φ2/2, what is the condition on the initial value
of the field in order for this limit to apply? [5]

(b) Consider an inflaton potential of the form of a double well:

V (φ) =
1

4λ
(λφ2 −m2)2.

Assuming an initial condition φ = φi at t = 0, where φi is small and positive,
show that the slow-roll equations have the solution

φ(t) = φi exp(t/τ),

and give an expression for the timescale τ . [6]

(c) Explain why inflation must finish before φ̇2/2 = m4/4λ, and hence that it
finishes close to the origin, at φ ≃ m2τ/

√
2λ, provided m/

√
λ≪ mP. Thus show

that a sufficiently long period of inflation requires

φi <
τm2

√
2λ

exp
(

−180
√
λ/τ 2m2

)

.
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[9]

(d) Give a qualitative account of the history of the scalar field after inflation ends,
and explain in outline how the transition to a radiation-dominated universe takes
place. [5]
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