
Advanced Cosmology: Summer 2008

Section A Answer two Questions

A.1.

(a) Starting from the Friedmann equation, show that the Hubble parameter as
a function of epoch can be written as

H2(a) = H2
0

(

Ωma−3 + Ωra
−4 + Ωva

−3(w+1) + (1 − Ωt)a
−2

)

,

defining carefully all terms that appear. [6]

(b) Write down the integral for the relation between comoving distance and red-
shift, and explain the meaning of the terms ‘particle horizon’ and ‘event horizon’.
Give the relation between the current distance to an object at redshift z, the cur-
rent particle horizon, and the particle horizon at the time when the light we now
receive was emitted. [6]

(c) The North and South Hubble Deep Fields are two small patches that lie in
opposite directions on the sky, and which contain statistically identical galaxy
populations. Show that, according to the above model for H(a), there are critical
redshifts beyond which galaxies that we can observe in the two Hubble Deep
Fields have not established causal contact (a) by the present day; (b) by the
time at which the light we now see was emitted. Considering the following table
of comoving distances for a flat Ωm = 0.25 model, estimate these redshifts. [8]

z D(z)/h−1 Mpc

0.5 1345
1 2385
1.5 3178
2 3795
3 4690
5 5775
10 7051
∞ 10666

(d) Discuss this ‘horizon problem’ and explain how an early vacuum-dominated
phase of accelerated expansion permits causal contact to be achieved throughout
the universe. Define the equation-of-state parameter w and state the condition
on w needed in order to solve the horizon problem. [5]

A.2. A flat expanding universe contains a mean density of pressureless matter, ρm and
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a mean density of relativistic matter, ρr, with fractional density fluctuations in
each component of respectively δm and δr. The growth of these fluctuations is
described by the equations

δ̈m + 2
ȧ

a
δ̇m = 4πG (ρm δm + 2ρrδr)

δ̈
r

+ 2
ȧ

a
δ̇
r

= 16πG (ρm δm + 2ρrδr) /3.

where ρ̄m is the mean matter density.

(a) Define the distinction between adiabatic and isocurvature perturbation modes.
Prove that, according to the above equations, an adiabatic mode preserves a fixed
ratio between δm and δr at all times. [6]

(b) In the limit of short wavelengths, these equations are modified, with relativis-
tic streaming forcing δr → 0. With this modification, the equation for δm still
applies. Consider the evolution of these matter fluctuations through the era of
matter-radiation equality, defining y(t) = ρm/ρr. Show that the growth equation
at a time where curvature and vacuum energy can be neglected becomes

δ′′
m

+
2 + 3y

2y(1 + y)
δ′
m
−

3

2y(1 + y)
δm = 0,

where dashes denote d/dy. You may find it helpful to note that H = ȧ/a can be
written as H2

∝ (y−3 + y−4). [8]

(c) Show that δm ∝ y + 2/3 is a solution of this equation, and use this to
derive an expression for the dependence on scale factor of gravitational potential
perturbations. Give a physical explanation for this behaviour. [5]

(d) In terms of this solution, discuss the form of the matter transfer function,
explaining the characteristic length scales that it contains, and their dependence
on cosmological parameters. [6]

A.3.

The photons that constitute the Cosmic Microwave background were last scat-
tered at a mean redshift of 1070, with an rms dispersion in scattering redshift of
80. At this redshift, the relativistic density cannot be completely neglected. In a
flat vacuum-dominated universe, a good approximation to the comoving distance
to last scattering is DLS = (2c/H0)Ω

−0.4
m

.

(a) Calculate the comoving thickness of the last-scattering shell. Assuming that
this represents the smallest length-scale of surviving CMB temperature fluctu-
ations, estimate the angular scale below which the CMB temperature would
appear uniform. [6]

(b) Derive an expression for the comoving horizon size at last scattering, and
show that the angle that this length subtends today, θH−LS, is of order 1 degree.
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Explain without detailed calculation how this result would differ in an open
universe with zero vacuum density. [8]

(c) Explain in outline why this 1-degree scale is expected to be the dominant
scale in the pattern of CMB temperature anisotropies. [5]

(d) Adopting Ωm = 0.25 and h = 0.73, calculate the response of the horizon angle
to small changes in these parameters, in the approximate form θH−LS ∝ Ωa

m
hb.

Explain how this result combines with information from large-scale structure to
allow both Ωm and h to be measured. [6]
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