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Astronomical Statistics: Tutorial Solutions 3

John Peacock

C20 Royal Observatory; jap@roe.ac.uk

1. Data: (v1, r1) = (0, 1) and (v2, r2) = (1, 2), with errors σi = 1 on r1 and r2. Errors on v1 and
v2 are negligible.

(i) Test Hypothesis that ri = 0. Method: compute χ2, and calculate probability that χ2 would
be larger than observed value by chance (χ2 is on the high side).

χ2 =
2
∑

i=1

r2i
σ2
i

= 5. (1)

There are TWO degrees of freedom, ν = n− np = 2, since there are np = 0 free parameters in
the model, and n=2 data points. Hence

p(χ2|ν) = e−χ2/2

2Γ(1)
=

e−χ2/2

2
. (2)

Probability that χ2 > 5 is

p(χ2 > 5|ν = 2) =
1

2

∫ ∞

5
dχ2e−χ2/2 = e−5/2 = 0.08. (3)

Can exclude the hypothesis with 92% confidence (or 84% if you accept that a very low value of
χ2 is just as unlikely). This is not very strong - generally results with less than 99% confidence
are regarded with suspicion, and some people insist on more).

(ii) Parameter Estimation. If we assume uniform prior form and c (i.e. joint p(m, c) =constant),
then p(m, c|D) ∝ p(D|m, c), the likelihood, L. (D=the data). For gaussian errors,

L ∝ exp

{

−1

2

2
∑

i=1

[ri − (mvi + c)]2

σ2
i

}

. (4)

Multiplying out the exponent, we get

−2 lnL = constant+ (1− c)2 + [2− (m+ c)]2 (5)

= constant+ 2c2 − 6c+ 2mc+m2 − 4m+ 5.

The most probably values m and c are the maximum likelihood estimate, given by ∂ lnL/∂c = 0
and ∂ lnL/∂m = 0, which give two simultaneous linear equations

4c− 6 + 2m = 0 (6)

2m− 4 + 2c = 0
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with solution m = c = 1.

Assuming the likelihood has a gaussian shape, the conditional error on c (i.e. keeping m fixed
at its maximum likelihood value m = 1 is given by

σ−2
c = − ∂2 lnL

∂c2

∣

∣

∣

∣

∣

c=1

= 2 ⇒ σc =
1√
2

(7)

Similarly, the conditional error on m is 1. This expression comes from a Taylor expansion of
lnL about the maximum (so the first derivative term vanishes):

lnL = constant+
1

2

∂2 lnL

∂c2

∣

∣

∣

∣

∣

c=cmax

(c− cmax)
2 + . . . (8)

⇒ L ∝ exp

(

1

2

∂2 lnL

∂c2

∣

∣

∣

∣

∣

c=cmax

(c− cmax)
2

)

and comparison with the standard form of the gaussian allows us to identify the conditional
error in c as above.

For the marginal error, we allow for the fact that m is not fixed at m = 1, and this variation
inevitably increases the error on c. We need to invert the (negative) second-derivative matrix
(see notes),

Hij = −∂2 lnL

∂θi∂θj
=
(

2 1

1 1

)

⇒ H−1 =
(

1 − 1

−1 2

)

(9)

and take:
σc = (H−1)

1/2
11 = 1; σm = (H−1)

1/2
22 =

√
2. (10)

Note that it is almost always correct to quote the marginal error, not the conditional error.

(iii) Model selection.

The Bayesian evidence ration is

B12 ≡
p(M1|D)

p(M2|D)
=

∫

dθ1p(D|θ1M1)p(θ1|M1)
∫

dθ2p(D|θ2M2)p(θ2|M2)

p(M1)

p(M2)
(11)

where we note that model 1 has only one parameter (c), whereas model 2 has 3 (m and c).

Now, for model selection (as opposed to parameter estimation) we have to pay some attention
to the normalisation of the priors, even if flat. If we assume that c and m are assumed to have
flat priors within finite ranges ∆c and ∆m, then the prior on the single parameter c in model
1 is p(c|M1) = 1/∆c, so that it integrates properly to unity. In model 2, the prior on m and c
is p(m, c|M2) = (∆c∆m)−1.

Thus, assuming flat priors on the models, p(M1) = p(M2),

B12 = ∆m

∫

dc exp
{

−1
2

∑2
i=1(ri − c)2

}

∫

dc dm exp
{

−1
2

∑2
i=1(ri − [mvi + c])2

} (12)

= ∆m

∫

dce−
1

2
[(1−c)2+(2−c)2]

∫

dc dme−
1

2
[(1−c)2+(2−{m+c})2] .

The denominator is just 2π, since it is integrated easily by substituting u = 2 − (m + c) and
v = 1 − c. The jacobian of the transformation is unity, and the top is just

∫

du dve−(u2+v2)/2,
which factorises. Note the prior on c has cancelled out.
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The denominator is computed by completing the square (c − 3/2)2 − 1/4 and substituting
z = c− 3/2. The resulting integral

∫ ∞

−∞
dze−z2 =

√
π. (13)

Hence for ∆m = 5, B12 = 5 e−1/4

2
√
π

= 1.1. So the first model is very slightly favoured. Note that
this reveals an unsatisfactory aspect of Bayesian methods - our conclusion depends heavily on
the prior for m, which we may have few grounds to set.

2. We have to consider the joint probability of x, y and z, and marginalise over z to get p(x, y|m, c) =
∫

dzp(x, y, z|m, c). We need to decide how to split the probability of x, y and z. A moment’s
thought tells us that x depends on z (its true value), via a gaussian error distribution, and y
depends on the value of z through the linear relation y = mz+ c (plus noise), so it makes sense
to split as follows (this is just the product rule; the m and c are common to all the probabilities):

p(x, y, z|m, c) = p(x, y|z,m, c)p(z|m, c). (14)

If we take a flat prior for z, then the likelihood is

p(x, y|m, c) ∝
∫ ∞

−∞
dzp(x|z,m, c)p(y|z,m, c) (15)

which is, for gaussian errors with rms σx and σy,

p(x, y|m, c) =
1

2πσxσy

∫ ∞

−∞
dz exp

[

−(x− z)2

2σ2
x

]

exp

[

−(y − {mz + c})2
2σ2

y

]

. (16)

With σx = σy = 1, the probability of m and c, given a single data point, is proportional to the
likelihood, assuming uniform priors. (We get the full probability of the dataset by multiplying
the probabilities of each individual data point, assuming they are independent).

Letting u ≡ x− z:

p(m, c|x, y) ∝ exp

(

−u2

2

)

exp

{

− [y −m(x− u)− c]2

2

}

. (17)

Multiplying the second bracket out to isolate the u2 term, and combining it with the first gives

p(m, c|x, y) ∝ exp

[

−u2(1 +m2)

2

]

exp

{

− [y −mx− c]2

2

}

exp
[

−1

2
(y −mx− c)2um

]

. (18)

Letting v = y −mx− c, and completing the square for the u integration,

p(m, c|x, y) ∝ exp



−1

2

(

u
√
1 +m2 +

vm√
1 +m2

)2


 exp

{

−
[

v2m2

2(1 +m2)

]}

exp

(

−v2

2

)

. (19)

Integrating over u (change variable again...), and including all the points:

p(m, c|{xi, yi}) ∝
∏

i

(1 +m2)−1/2 exp

[

−(yi −mxi − c)2

2(1 +m2)

]

. (20)
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3. Malmquist Bias arises when we have a sample of objects which are selected, or detected, on
their apparent luminosity. In the case of stars or galaxies there is a limiting luminosity below
which we do not see the object as it is too faint. Since the apparent luminosity, L, is given by
L = 4πSD2, where S is the flux of the object andD is its distance, this correlates luminosity and
distance. As this happens independently of the wavelength, the luminosities at each wavelength
will all become correlated with the distance and consequently with each other. One way to
avoid this is to correlate fluxes (rather than luminosities) in different wavelengths instead.

4. Use the product rule:
P (M,N) = P (M)P (N |M) (21)

and the first term is a Poisson distribution (given), with parameter (=mean) µ = λt. The
second term is just a binomial - the probability of detecting N photons fromM , if the individual
probability is p.

Thus

P (M,N) =
µM

M !
e−µ M !

N !(M −N)!
pNqM−N (22)

To get P (N), marginalise over M , noting that M is discrete, so it is a sum, not an integral:

P (N) =
∞
∑

M=N

P (M,N) (23)

where we note that at least M photons must be emitted if N are detected... Substituting for
P (M,N), and letting i = M −N ,

P (N) =
∞
∑

M=N

P (M,N) =
pNq−Ne−µ(µq)N

N !

∞
∑

i=0

(µq)i

i!
. (24)

The sum is just eµq (make sure you can spot these!), hence

P (N) =
(µp)Ne−pµ

N !
, (25)

which is just a Poisson distribution with mean µp.

The last part follows similar lines, and is left for you to work out. If you can’t do it, come and
see me.
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