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1. An astronomer attempts to make a number of measurements of the distances and velocities
of galaxies. Unfortunately, due to bad weather, only two measurements are possible. The
velocities, from Doppler shifts, have negligible errors, but the distances are poorly known. The
data are v1 = 0, r1 = 1 and v2 = 1, r2 = 2, in some suitable units. The measurements are
independent, and have independent gaussian errors with σ1 = σ2 = 1. Use these data to do
hypothesis testing, parameter estimation, and model selection, as follows:

(i) Test the hypothesis that the distances are all zero. How many free parameters np does the
model have, and hence how many degrees of freedom ndata − np are there? Calculate χ2 and
compute the probability that χ2 is at least as high as the observed value. You may use the
result that the distribution of χ2 for ν degrees of freedom is

p(χ2|ν) =
e−χ2/2

2Γ(ν/2)

(

χ2

2

)ν/2−1

. (1)

(NB could also argue that the probability is double your answer, as a very low value of χ2

would be just as remarkable).

(ii) Parameter Estimation: Model the data by ri = mvi + c, where m and c are parameters to
be determined. Find the most probable values of m and c, stating your assumptions. Estimate
the conditional errors on m and c from the curvature of the posterior probability. From the
second derivative matrix, estimate the marginal errors on m and c.

(iii) Model selection: Two models are proposed. M1 is that ri = c, whereas M2 is the model in
(ii) above. What is the relative probability of the two models? For this you will have to make
some choice of priors. Assume flat priors within allowed ranges of c and m which are both
large, and express your answer in terms of the ranges ∆c and ∆m. If ∆m = 5 which model is
favoured, and by how much? Comment on your answer.

2. A set of independent measurements {xi, yi} has independent gaussian errors in both x and y.
We want to fit a straight line y = mx + c and estimate parameters m and c.

First consider a single data point x, y with errors σx, σy. Remember that we don’t know the
true value of x (call this z), so we have to consider the joint probability of x, y and z, and
marginalise over z to get p(x, y|m, c). Show that the likelihood is

p(x, y|m, c) =
1

2πσxσy

∫

∞

−∞

dz exp

[

−
(x − z)2

2σ2
x

]

exp

[

−
(y − {mz + c})2

2σ2
y

]

. (2)

For simplicity now assume that σx = σy = 1, and show that the probability of m and c is
(assume uniform priors)

p(m, c|{xi, yi}) ∝
∏

i

(1 + m2)−1/2 exp

[

−
(yi − mxi − c)2

2(1 + m2)

]

. (3)
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3. Explain what Malmquist bias is, and explain how it can fool the unwary astronomer into think-
ing that stellar or galaxy luminosities measured at different wavelengths can appear correlated,
even if there is no true correlation.

4. An astronomical source emits photons with a Poisson distribution, at a rate of λ per second.
A telescope detects the photons independently, with probability p. In time t, the source emits
M photons, and N are detected. Show that the joint probability of N and M is

P (M,N) =
µM

M !
e−µ M !

N !(M − N)!
pNqM−N (4)

where µ = λt and q = 1 − p.

Marginalise over M to show that

P (N) =
pNq−Ne−µ

N !

∞
∑

M=N

(qµ)M

(M − N)!
(5)

Sum the series to show that N has a Poisson distribution with expectation value pµ. Why
could this have been anticipated?

Calculate the probability that the source has emitted M photons given that N have been
detected, P (M |N), for M ≥ N , and deduce that M − N also has a Poisson distribution, and
compute the expectation value for M − N .
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