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Astronomical Statistics: Tutorial Solutions 2
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1. The number of parameters is Np = 10, the number of data points is ND = 50 so
the number of degrees of freedom is ν = 50 − 10 = 40. The fit gives a χ2 = 53.3
which means a reduced χ2

R = 53.3/40 = 1.333 with an error
√

2ν/ν = 8.9/40 = 0.22
so that χ2

R = 1.33 ± 0.22. For five parameters the calculation is similar giving
χ2

R = 1.20 ± 0.21; from this we conclude that the 10 parameters achieve a worse fit
than the 5-parameter fit.

2. The optimal way to average data is by reciprocal variance weighting. Thus our best
estimate of Ωm is [0.24/0.0152 + 0.30/0.0252]/[[1/0.0152 + 1/0.0252] = 0.256. With
weights wi, the variance is

∑

i w
2

i σ
2

i /(
∑

i wi)
2, and for the optimal weighting, this is

1/(
∑

i wi). Thus the rms error on our estimate is 0.013.

Following the same reasoning, with errors reduced by a factor two for both exper-
iments, we will obtain the same combined figure, and the rms error would halve:
0.256±0.006. But before accepting this answer, we should do a goodness-of-fit san-
ity check: is the combined figure consistent with the original data? We can compute
χ2 (on 1 d.f., since the combined figure is in effect a minimum-χ2 value). For the
original data, this is

χ2 = (0.24 − 0.256)2/0.0152 + (0.30 − 0.256)2/0.0252 = 4.2,

which is not strongly significant: a 2.1σ result. But with the reduced errors, this
becomes χ2 = 16.9, which is a 4.1σ result. Thus the input data are inconsistent
with each other on the stated errors, and the combined figure should not be trusted.

There is no certain way of proceeding from this point, but one common approach
is to assert that the two experiments must have neglected some additional source
of error, which we assume afflicts each experiment equally. Thus, we should replace
the quoted errors by (σ2

i + ǫ2), where ǫ2 is the variance of the additional ‘systematic’
error. The only information we have on how big ǫ might be is from the difference
in the two measurements (call them x and y): 〈(x − y)2〉 = σ2

1
+ σ2

2
+ 2ǫ2. Since

x − y = 0.06, this yields an estimate of ǫ = 0.0412, so that the realistic errors on
the two measurements would be 0.0419 and 0.0431. So now the weighted result is
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0.269 ± 0.030 This is less accurate even though the experiments now claim to be
more accurate. The reason is that at first we had no proof that systematic errors
were present, but this became apparent as the experiments ‘improved’ their results.

3. exp[G] is a reasonable candidate for a density, since it is always positive, becoming
zero in the limit that G → −∞. But in order to be correctly normalized as a
fluctuation around the mean density, we need 〈δ〉 = 0, i.e. 〈exp[G + c]〉 = 1. The
required integral is

〈exp[G]〉 =
1

(2π)1/2σ

∫

exp[G] exp[−G2/2σ2] dG.

As usual, we need to complete the square, so that G−G2/2σ2 = −(G− σ2)2/2σ2 +
σ2/2, yielding 〈exp[G]〉 = exp[σ2/2] and hence c = −σ2/2.

The variance is obtained similarly:

〈δ2〉 = 〈exp[2G + 2c] − 2 exp[G + c] + 1〉 = 〈exp[2G + 2c]〉 − 1.

Again, we need to complete the square: 2G−G2/2σ2 = −(G− 2σ2)2/2σ2 + 2σ2, so
that 〈δ2〉 = exp[σ2] − 1. Thus the variances in δ and in G are equal when they are
both small, but the variance in density becomes larger than that of the ‘generating
field’ G when σ is large.

4. The integral probability for z ≡ x + y is

P (< z) =
∫

∞

−∞

∫ z−x

−∞

p(x)p(y) dx dy,

and differentiating this to get p(z) gives a convolution integral. For a product,
z ≡ xy and we might think to write the same expression with z/x in the second
integral. The only subtlety is that, when x is negative, increasing z makes y more
negative (draw a diagram to see this). Thus the integral probability is in two parts:

P (< z) =
∫

∞

0

∫ z/x

−∞

p(x)p(y) dx dy, +
∫

0

−∞

∫

∞

z/x
p(x)p(y) dx dy.

Now, differentiating with respect to z changes the sign depending on whether x is
positive or negative; this can be combined into

p(z) =
∫

∞

−∞

p(x)p(z/x) dx/|x|.

Apply this to the case where p(x) is 1 when 0 < x < 1 and zero otherwise. We see
immediately that z must also lie between 0 and 1. When x < z, p(z/x) = 0, and
otherwise the product of the p’s is unity. Thus

p(z) =
∫

1

z
dx/x = − ln z = ln(1/z).

It is easy to check via integration by parts that this is a correctly normalized pdf
over 0 < z < 1.
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5. The Central Limit Theorem states that the sum of a set of N quantities drawn
independently from a pdf of finite variance will tend to have a Gaussian distribution
as N → ∞.

We can allow the two pdfs to have different properties, so that

p(z) =
∫

∞

−∞

p1(x)p2(z−x) dx =
1

2πσ1σ2

∫

∞

−∞

exp[−(x−µ1)
2/2σ2

1
] exp[−(z−x−µ2)

2/2σ2

2
] dx.

Completing the square of the term in the exponential to group the x-dependent
terms into the form A(x + B)2 is a standard exercise, if a bit messy in this general
case. But as usual, we can then integrate over x, and the remaining term is as we
would expect: −(z − µ1 − µ2)

2/2(σ2

1
+ σ2

2
), so we get a Gaussian in z. This result

is simpler to prove in Fourier space, using the fact that the Fourier transform of a
Gaussian is also a Gaussian.

The Lorentzian (Cauchy distribution) clearly has a divergent variance, which is why
it violates the Central Limit Theorem. It must be normalized, so that

1 =
∫

∞

−∞

A

1 + x2/σ2
dx = Aσ

∫

∞

−∞

1

1 + y2
dy = πAσ

(where the last step needs a recognition of the standard tan−1 integral). Hence
A = 1/(πσ). If the characteristic function is φ(k) = exp(−|k|σ), then the charac-
teristic function for the sum is exp(−2|k|σ). This is the characteristic function of a
Lorentzian of twice the ‘width’ (normally we would expect the rms to increase by√

2 on adding two independent variables).

For the 95% confidence range, repeating the above integral over a finite range gives

P (xmin < x < xmax) =
1

π
[tan−1(xmax/σ) − tan−1(xmin/σ)] =

2

π
tan−1(xmax/σ).

(where the last expression applies for a symmetric range). So for a 95% confidence
range, we want xmax/σ = tan(0.475π) = 12.7, hence the required range in x is
±12.7σ. Since the effective width doubles on adding two such variables, this would
become ±25.4σ.

6. If P (> z) = exp(−azb), then p(z) = abzb−1 exp(−azb). If we only have z = 1
measured, then

L = p(1) = ab exp(−a).

Normally, we differentiate to maximize, but this won’t give sensible results for b,
since clearly L is maximized as b → ∞ for any given a. Differentiating wrt a gives
b exp(−a)− ab exp(−a), which vanishes for a = 1. However, this derivation is more
than a little dubious if b is infinite. Indeed, looking at the expression for P (> z),
we see that a divergent b makes this a step from P = 1 to P = 0 at z = 1 for any
value of a (a reasonable outcome).

For a more sensible answer, we need more data. If our second measurement is
z = e, then L for this is ab exp(b− 1) exp(−aeb), so the overall likelihood from both
redshifts is

L = p(1)p(e) = a2b2 exp
[

b − 1 − a − aeb
]

.
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Differentiating wrt a and b gives

2a − a2(1 + eb) = 0 ⇒ a = 2/(1 + eb);

2b + b2(1 − aeb) = 0 ⇒ b = 2
eb + 1

eb − 1
.

The second equation requires some numerical experimentation to solve, yielding
b ≃ 2.3994 and hence a = 0.1664.

To get the Hessian matrix, we need to differentiate lnL twice. The first derivatives
are ∂L/∂a divided by L etc.:

∂ lnL/∂a = (2/a) − (1 + eb);

∂ lnL/∂b = (2/b) − (aeb − 1).

The second derivatives are now easy:

H = −
(

2/a2 eb

eb 2/b2 + aeb

)

.

Putting in the numbers for a and b, we get

H = −
(

72.2310 11.0166
11.0166 2.1806

)

.

The covariance matrix is the inverse of −H:

C =
(

0.0603 −0.3048
−0.3048 1.9986

)

.

Thus σa = 0.2456 and σb = 1.4137, and the correlation coefficient is −0.8779.
The conditional errors would be from the reciprocal square root of the diagonal
components of the negative Hessian: 0.1177 and 0.6772, and these are too small by
over a factor 2: the usual problem with strongly correlated errors.
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