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Astronomical Statistics: Tutorial Solutions 1
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1. What we know is that p(+|C) = 0.9 and p(−|N) = 0.9, where + and − denote positive
and negative tests, C denotes cancer and N denotes no cancer. As a simple consequence,
p(−|C) = 0.1 and p(+|N) = 0.1. What we want is p(C|+), which we get from Bayes’
Theorem:

p(C|+) =
p(+|C)p(C)

p(+)
=

p(+|C)p(C)

p(+|C)p(C) + p(+|N)p(N)
,

where the last step uses the theorem of total probability. Since we are told that p(C) =
0.01 (implying p(N) = 0.99), the number we want is

p(C|+) =
0.9 × 0.01

0.9 × 0.01 + 0.1 × 0.99
=

0.009

0.009 + 0.099
= 1/12.

So the odds are reasonably in favour of you being healthy, even though it might naively
sound like your probability of having the disease is the reliability of the test – i.e. p = 0.9.

This result can also be seen in a frequentist way: 1% of the population have cancer, of
whom 90% will generate a positive test. The other way of getting a positive test is to be
in the 99% who are healthy, of whom 10% will get a false alarm. The ratio of probabilities
for these two routes is 0.009/0.099, or 1:11, consistent with the Bayesian argument.

2. Frequentist view: The car will be behind one of the three doors with equal probability
p = 1/3; whichever door you pick, this is your chance of success. But whether you pick
a door with a car or a toy, it is always possible to show you another door containing a
toy. Therefore this adds no information about whether your initial choice was a good
one, and so your chance of success is still 1/3. But now the only other possibility is that
the car may lurk behind the 3rd door – the one that you didn’t choose, and which is still
unopened. Since probabilities sum to unity, the probability of the car being behind that
door must be 1 − 1/3 = 2/3, and you double your chance of success by switching.

In more detail, label the door you choose 1. Then the possibilities for door 1,2,3 are (a)
CTT, (b) TCT, (c) TTC – all equally probable. For (a), you lose by switching; for (b)
and (c) you win by switching. Therefore the chance of winning by switching is 2/3.

Bayesian view: there are three relevant numbers: S (the door you pick); C (the door
with the car); H (the door the host opens). Label the door you pick number 1, and
the one the host opens number 3 (we can always choose these labels). So we want

1



p(C = 2|S = 1, H = 3). By Bayes’ Theorem, this is

p(C = 2|S = 1, H = 3) =
p(H = 3|C = 2, S = 1)p(C = 2|S = 1)

∑

3

i=1 p(H = 3|C = i, S = 1)p(C = i|S = 1)
.

We know all the components of this:

p(H = 3|C = 1, S = 1) = 1/2; p(H = 3|C = 2, S = 1) = 1; p(H = 3|C = 3, S = 1) = 0,

so the required probability is

p(C = 2|S = 1, H = 3) =
1 × (1/3)

(1/2) × (1/3) + 1 × (1/3) + 0 × (1/3)
= 2/3.

3. If NT is the number of photons from the source field, and NB the number of background
counts, then our best estimate of the source counts is evidently N̂S = NT − NB. The
variance of this is the sum of the variances of the rhs terms, σ2

S = σ2
T + σ2

B = NT + NB,
since the photons obey Poisson statistics. Thus the signal to noise is

S

N
=

NT − NB

NT + NB

=
300√
2500

= 6.

With a second background field, detecting NB2 photons, the estimate of the background
count is (NB + NB2)/2, so the estimate of the source counts changes to

N̂S = NT − (NB + NB2)/2 = 275.

The variance is (remembering that the variance of NB/2 is σ2
B/4) given by σ2

S = NT +
NB/4 + NB2/4. Putting in the numbers gives S/N = 6.21, so the significance goes up
from 6σ to 6.2σ.

4. First imagine numbering the trials from 1 to N ; each trial has an outcome, which is a
number between 1 and m. If we get n1 instances of outcome 1, n2 instances of outcome 2,
etc., then this gives a a set of n1 trial numbers that gave 1, etc. The probability of exactly
those trials giving exactly those outcomes is pn1

1 pn2

2 pn3

3 · · ·. But we only care about the
total number of outcomes, not which trial gave them, so there are many other possible lists
of trial numbers, each of which have the same probability; we just need to count how many
ways there are of getting this set of ni outcomes. Start by picking the trial numbers that
result in 1: we are choosing n1 out of N , so there are N(N − 1)(N − 2) · · · (N −n1 +1) =
N !/(N−n1) different sequences. But we want to have these listed in order of trial number,
since doing trial 2 before trial 1 makes no sense. Thus we divide by n1! and get the usual
CN

n1
expression as the number of ways we could choose our n1. Now we choose the trials

that yield n2: there are N − n1 left, so the number of ways is CN−n1

n2
. Continuing this

arguments, the total number of ways of getting our n1 etc. is

CN
n1

CN−n1

n2
CN−n1−n2

n3
· · · =

N !

(N − n1)!n1!

(N − n1)!

(N − n1 − n2)!n2!

(N − n1 − n2)!

(N − n1 − n3 − n3)!n3!
· · ·

It should be clear that factorials cancel in the top and bottom of successive terms, so that
only the N !/n1!n2!n3! · · · factor survives.

A more direct route to the same expression is to imagine making a permutation of all
the N trial numbers, which we lay out in a line. Now chop the line into pieces of length
n1, n2 etc., which picks the trials that succeeded in each case. Overall, there are N !
permutations; but for each sublist there are ni! permutations, only one of which has the
trials ordered. Therefore the number of distinct ways of partitioning the trials, but having
them ordered is N ! divided by all the ni! factors.
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5. It is convenient to introduce a variable y, which is a zero-mean Gaussian of unit variance:
〈y〉 = 0; 〈y2〉 = 1; 〈y3〉 = 0; 〈y4〉 = 3. The latter two results are obtained (a) by symmetry
and (b) by integration by parts. Now properties of the variable x can be obtained by
writing x = µ + σy.

(i) 〈x〉 = µ + 〈y〉 = µ, using linearity.

(ii) 〈x2〉 = 〈(µ2 + σ2y2 + 2µσy〉 = µ2 + σ2〈y2〉 + 2µσ〈y〉 = µ2 + σ2.

(iii) 〈x3〉 = 〈(µ3 + 3µ2σy + 3µσ2y2 + σ3y3〉 = µ3 + 3µσ2

(iv) 〈x4〉 = 〈(µ4 + 4µ3σy + 6µ2σ2y2 + 4µσ3y3 + σ4y4〉 = µ4 + 6µ2σ2 + 3σ4.

The sample variance is s2 = (1/N)
∑

(xi − m)2, where m, the sample mean, is m =
(1/N)

∑

xi – so s2 = (1/N)
∑

x2
i −m2, as usual. Thus 〈s2〉 = 〈x2〉− 〈m2〉. The first term

is 〈x2〉 = µ2 + σ2. For the second, write m2 = (1/N2)
∑

i x
2
i + (1/N2)

∑

i6=j xixj, of which
the expectation is (1/N)(µ2 + σ2) + (1/N2)(N2 − N)µ2. Overall, then,

〈s2〉 = µ2 + σ2 − (1/N)(µ2 + σ2) − (1/N2)(N2 − N)µ2 = σ2(1 − 1/N).

The same exercise for the sample skewness, 〈(1/N)
∑

(xi −m)3〉 looks like it will be more
complicated, but fortunately we can make a symmetry argument. Consider inverting all
deviations from the mean, i.e. replacing all xi − µ by −xi + µ, which has to be equally
likely to the uninverted data, by the symmetry of the pdf for the xi. But this inverts
the sign of xi − m, giving two equal and opposite contributions to 〈(xi − m)3〉, which
therefore vanishes by symmetry. Thus both the sample and population skewness are zero
for Gaussian data.

6. (i) The distribution f(x) will only be a valid pdf if it is normalized to unity:

∫

+∞

−∞
f(x)dx =

∫

+∞

−∞
φ(x)dx + α

∫

+∞

−∞
φ(x)(x3 − 3x)dx + β

∫

+∞

−∞
φ(x)(x4 − 6x2 + 3)dx

= 1 + α × 0 + β
(

(2 × 2 − 1)!!〈x2〉2φ − 6〈x2〉φ + 3
)

= 1 + β(3 − 6 + 3)

= 1 (1)

where we used φ(x)(x3 − 3x) is an odd function integrated over an even space, hence its
integral over that space is zero and that we are dealing with a unit-variance Gaussian,
with zero mean, i.e. 〈x〉φ = 0 and 〈x2〉φ = 1. The required condition therefore holds for
any values of the two constants.

However, the constants α and β must be such that α(x3 − 3x) + β(x4 − 6x2 + 3) ≥ −1
for all x, in order to avoid unphysical negative values of f(x).

(ii) The mean is given by:

〈x〉f =
∫

+∞

−∞
xf(x)dx

=
∫

+∞

−∞
xφ(x)dx + α

∫

+∞

−∞
xφ(x)(x3 − 3x)dx + β

∫

+∞

−∞
xφ(x)(x4 − 6x2 + 3)dx

= 0 + α
∫

+∞

−∞
φ(x)(x4 − 3x2)dx + β × 0

= α
(

(2 × 2 − 1)!!〈x2〉2φ − 3〈x2〉φ
)

= 0
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and the variance is given by:

s2 = 〈(x − 〈x〉f )2〉f = 〈x2〉f
=

∫

+∞

−∞
x2f(x)dx

=
∫

+∞

−∞
x2φ(x)dx + α

∫

+∞

−∞
x2φ(x)(x3 − 3x)dx + β

∫

+∞

−∞
x2φ(x)(x4 − 6x2 + 3)dx

= 1 + α × 0 + β
∫

+∞

−∞
φ(x)(x6 − 6x4 + 3x2)dx

= 1 + β
(

(3 × 2 − 1)!!〈x2〉3φ − 6(2 × 2 − 1)!!〈x2〉2φ + 3〈x2〉φ
)

= 1 + β(15 − 18 + 3) = 1

(iii) The skewness is given by:

〈x3〉f =
∫

+∞

−∞
x3f(x)dx

=
∫

+∞

−∞
x3φ(x)dx + α

∫

+∞

−∞
x3φ(x)(x3 − 3x)dx + β

∫

+∞

−∞
x3φ(x)(x4 − 6x2 + 3)dx

= 0 + α
∫

+∞

−∞
φ(x)(x6 − 3x4)dx + β ∗ 0

= 0 + α
(

(3 × 2 − 1)!!〈x2〉3φ − 3(2 × 2 − 1)!!〈x2〉2φ
)

= 6α

and the kurtosis is estimated in a similar way:

〈x4〉f =
∫

+∞

−∞
x4f(x)dx

=
∫

+∞

−∞
x4φ(x)dx + α

∫

+∞

−∞
x4φ(x)(x3 − 3x)dx + β

∫

+∞

−∞
x4φ(x)(x4 − 6x2 + 3)dx

= (2 × 2 − 1)!!〈x2〉2φ + α × 0 + β
∫

+∞

−∞
φ(x)(x8 − 6x6 + 3x4)dx

= 3 + β
(

(4 × 2 − 1)!!〈x2〉4φ − 6(3 × 2 − 1)!!〈x2〉3φ + 3(2 × 2 − 1)!!〈x2〉2φ
)

= 3 + β(105 − 90 + 9) = 3 + 24β

Note that this question would have been more complicated if the mean m (= 〈x〉f ) was
non-zero. In general, the variance is 〈(x−m)2〉 = 〈x2〉−m2; the skewness is 〈(x−m)3〉 =
〈x3〉 + 2m2 − 3m〈x2〉; and the kurtosis is 〈(x − m)4〉 = 〈x4〉 − 4m〈x3〉 + 6m2〈x2〉 − 3m4.

7. Although this is a 2D pdf, expectation values of 1D variables like x are well-defined, but
we need to integrate over both x and y. Start with 〈x〉:

〈x〉 =
∫∫

x A exp[−(ax2 + by2 + cxy)/2] dx dy,

where A is a normalization constant. As is common with Gaussian problems, we have to
complete the square in the exponential: by2+cxy = b(y+cx/2b)2−c2x2/4b = bz2−c2x2/4b,
where z ≡ y + cx/2a. The Jacobian between (x, z) and (x, y) is a constant, so we can
immediately integrate over z, leaving

〈x〉 ∝
∫

x exp[−(ax2 − c2x2/4b)/2] dx,
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which vanishes through symmetry (this wasn’t obvious in the initial 2D expression).
Similarly, 〈y〉 = 0.

For the variances and covariance, we need 〈x2〉, 〈y2〉, and 〈xy〉. The first of these follows
the same line as above:

〈x2〉 =

∫

x2 exp[−(ax2 − c2x2/4b)/2] dx
∫

exp[−(ax2 − c2x2/4b)/2] dx
.

The integral on the top line is done by parts, yielding

〈x2〉 = (a − c2/4b)−1,

from which it is obvious that
〈y2〉 = (b − c2/4a)−1.

To get 〈xy〉, it may like we have more work to do, but we can save this by considering
〈xz〉: this must vanish because the z dependence is odd. But from the definition of z,
〈xz〉 = 〈xy〉 + c〈x2〉/2a. Hence 〈xy〉 = −c〈x2〉/2a. So finally the correlation coefficient is

r ≡ 〈xy〉
(〈x2〉〈y2〉)1/2

= − c

2(ab)1/2
.

All these relations can be obtained much more simply by the general expression for a
zero-mean Gaussian, in which the pdf is proportional to

exp[−(x, y) · C−1 · (x, y)/2] = exp[−(x2/σ2

x + y2/σ2

y − 2rxy/σxσy)/2(1 − r2)],

where C is the covariance matrix.

To deal with the rotation to new coordinates, a useful shorthand is to write the rotation
using C ≡ cos θ and S ≡ sin θ. Then we have

ax2+by2+cxy = a(C2X2+S2Y 2−2SCXY )+b(C2Y 2+S2X2+2SCXY )+c(C2XY −S2XY ).

We can eliminate the cross term in XY if

c(C2 − S2) + 2SC(b − a) = 0 ⇒ tan 2θ = c/(b − a),

so now

ax2 + by2 + cxy = X2(aC2 + bS2) + Y 2(aS2 + bC2) ≡ X2/σ2

X + Y 2/σ2

Y

and the pdf factorises into independent Gaussians in X and Y , whose variances can be
read from the formula. In making this statement, we need to be clear that we are using
the fact that the Jacobian between (x, y) and (X,Y ) is unity.
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