
Cosmological Physics: additional topics

1.1 Inflationary matching

The full history of the scale factor in an inflationary universe is worth considering in detail.
Start by assuming that the energy density is a mixture of radiation and vacuum energy only,
and furthermore consider only a flat model with k = 0. This last step can be justified from the
Friedmann equation:

Ṙ2 −
8πG

3
ρR2 = −kc2. (1.1)

If the model expands sufficiently far, the vacuum density will dominate and ρR2 will increase
with time – having a minimum value at roughly the point when the densities in radiation and
vacuum are equal. If curvature is unimportant at this point, it can always be neglected. We
can therefore write the Friedmann equation in terms of a scale factor normalized so that a(t) is
unity at some critical time t1:
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a2. (1.2)

An obvious choice for t1 is the crossover point where ρr
1 = ρv

1, and an obvious unit for time is
τ ≡ (8πGρv

1/3)
−1/2. With these units, and using dashes to denote d/d(t/τ), we get

a′
2
= a−2 + a2 ⇒ (a2)′/2 =

√

1 + (a2)2, (1.3)

which is simply integrated to yield

a =
√

sinh(2t/τ). (1.4)

This expression neatly interpolates between a ∝ t1/2 in the early radiation era, and a ∝ exp t/τ
in a late-time de Sitter phase. The radiation-vacuum crossover between these regimes happens
at t1/τ ' 0.441.

As is well-known, the de Sitter phase can solve the horizon problem by stretching a small
causally-connected patch to a size large enough to cover the whole presently-observable universe,
provided it continues for long enough. If the characteristic energy scale of inflation is at the
GUT level, then at least 60 e-foldings are required. To illustrate what happens next, suppose
that the vacuum energy drops abruptly to zero. In a realistic model, this would of course take
some time to happen, but the event can be brief enough that we can model it as a discontinuity.
Assume that this event takes place at a time t/τ = T : we have to match a and ȧ at the join
(otherwise the acceleration form of Friedmann’s equation would be singular). Before T , we have
a =

√

sinh(2t/τ); after T , we have just radiation-dominated growth – but we should not assume
that this is just a ∝ t1/2. In order to match the boundary conditions, a shift in the origin of
time is needed:

a = A(t/τ −B)1/2, (1.5)

where it is easy to show that A =
√
2 cosh 2T and B = T − (1/2) tanh 2T . This is the radiation-

dominated solution that applies after the vacuum has decayed. If we make observations after
this point, the model has the appearance of a standard hot big bang, with an origin of time at
t/τ = B. This solution is plotted in figure 1.1, which illustrates a common error. As we have
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Figure 1.1. The true history of the scale factor in a simple inflationary model.
In the top panel, the universe starts out with a singularity at t = 0; it contains
radiation and vacuum energy, and these reach equal density at time t1. The
subsequent near-exponential behaviour is then assumed to increase the scale factor
by a factor exp(60), following which the equation of state abruptly changes to zero
vacuum density. This must occur in such a way as to match R and Ṙ, leading to the
solid curve, where the plotted point indicates the join. The post-inflation phase is
exactly radiation dominated, but with a shift in the origin of time, so that the line
marked ‘A’ is an incorrect (but commonly encountered) extrapolation of the post-
inflation phase back in time. The correct extrapolation if vacuum energy is ignored
is line ‘B’, which emerges from an apparent singularity shortly before the time of
vacuum decay. This is shown in detail in the second panel, where the origin of time
is explicitly shifted to place the apparent singularity at t′ = 0. The first radiation
phase can be ignored, so the universe stays in an exponential de Sitter phase for
an indefinite time until the vacuum decays at time t′ = t2. For 0 < t′ < t2, the
dashed curve indicates the time dependence we would infer if vacuum energy was
ignored: the classical ‘big bang’. The inflationary solution clearly removes this
feature, placing any singularity at large negative time. The true model expands
much less rapidly than the big-bang extrapolation, and is much older. This is one
way of seeing how the horizon problem can be evaded.
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shown, the post-inflation behaviour is not a ∝ t1/2, and so it is incorrect to extrapolate the final
radiation phase back in time using this law. This would give the line labeled ‘A’, which lies above
the true a(t) curve, suggesting that the inflationary universe is always smaller than we would
expect from post-inflation data. The correct extrapolation is the line ‘B’, which emerges from a
singularity just before the time of vacuum decay, and which always lies below the full solution.

We can illustrate this more clearly by zooming in on the part of the time axis around the
apparent singularity, which we take to occur at a new time coordinate t′ = 0. The problem can
be simplified by assuming that the inflationary phase is exactly exponential, so we have to match
a ∝ expHt′ to a ∝ (t′)1/2, at a time t′ = t2; it is then easy to show that t2 = 1/2H. The solution
in this form is shown in the second panel of figure 1.1. When we observe the universe at t′ > t2,
we predict that there was a singularity at t′ = 0, but the real universe existed far earlier than
this. In principle, the question ‘what happened before the big bang?’ is now answered: there
was no big bang. There might have still been a singularity at large negative t′, but one could
imagine the de Sitter phase being of indefinite duration, so that the true origin of everything
can be pushed back to t′ = −∞. This idea of a non-singular origin to the expansion dates back
to E.B. Gliner (1966: Sov. Phys. – JETP, 22, 378).

This expanded plot of a(t) presents the history of the universe in a manner that challenges
the way inflation is commonly described. Guth’s phrase ‘an extraordinarily rapid expansion’ is
correct as stated, but it obscures the fact that the rate of expansion would have been even greater
were it not for the vacuum energy. Compared to the a ∝ t1/2 of a standard hot big bang, the
inflationary universe is in fact an extraordinarily slow expansion. Indeed, this feature is exactly
what is needed in order to solve the horizon problem: the universe is actually much older than
we would infer from observations in the radiation era, so establishing causal contact is much less
of a problem.
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