
First year PhD astrophysics reading group

Hand-in problems 2018/19 Coordinator: Ken Rice

(1) [Hand-in to John Peacock on Monday Oct 15]

A simplified galaxy model consists of a uniform slab of thickness L, containing stars mixed
with dust. Assume that the dust has no scattering opacity, that the volume emissivity of
starlight, 4πjν , is constant throughout the slab, and let τ0 denote the optical depth for a
light ray passing perpendicularly through the slab.

Calculate the surface brightness observed as a function of inclination. Show that it is a
constant for large τ0, but varies with angle in the optically thin limit. For the latter case,
calculate the emergent flux density and verify that it satisfies conservation of energy.

Discuss qualitatively how these results would change if the dust is now given a mixture of
scattering and absorption opacities. In the case of pure scattering, it can be assumed that
the emergent radiation is isotropic. Use conservation of energy to calculate the surface
brightness in this case.

(2) [Hand-in to Andy Lawrence on Monday Oct 22]

(a) An astronomer wishes to observe Star A, which has an R-band magnitude of 18.03
and is located at RA=05h32m15.54s and Dec=+56◦13′19.2′′. To locate this faint star,
the astronomer decides to first centre their telescope on Star B at RA=05h32m16.23s

and Dec=+56◦12′57.4′′, and then offset the telescope to Star A. How many arcseconds
north/south and east/west does the telescope need to be offset? Sketch the relative
positions of the two stars on the sky.

(b) A spectrum of Star A indicates that it is an A0 star, like Vega. What does this imply
about the intrinsic optical colours of the star? Define what is meant by the term Absolute
magnitude. Given that the absolute V-band magnitude of Vega is +0.6, determine the
distance to Star A.

(c) At this magnitude, the Gaia satellite will be able to measure positions to an accuracy
of 10−4 arcsec. Will it be able to measure the parallax of this star?

(d) The integrated flux of Vega is about 2.5× 10−8W m−2. What is the integrated flux of
Star A? Hence, what is its luminosity in solar luminosities?

Assuming a surface temperature of 10,000 K, estimate the radius of Star A in solar units.

[L� = 3.85× 1026W, R� = 6.96× 108m, σSB = 5.67× 10−8 W m−2K−4]
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(3) [Hand-in to Jim Dunlop on Monday Oct 29]

(a) A star of temperature T is surrounded by a cloud of neutral hydrogen. Explain how
to calculate the rate at which the star emits photons capable of causing ionization.

(b) Show that the star creates an ionized nebula that grows in radius proportional to t1/3

at early times, and explain the behaviour at late times in terms of radiative recombination.

(c) Calculate the kinetic energy given to an electron in a single ionization event, assuming
that the stellar spectrum can be approximated as a power law fν ∝ ν−α, and hence
obtain a prediction for the temperature of the nebula if the energy loss rate is dominated
by recombination.

(d) Explain how forbidden lines allow us to measure temperatures in nebulae, and also
why these lines account for the fact that nebulae tend to be much cooler than their central
stars.

(4) [Hand-in to Eric Tittley on Monday Nov 5]

For this problem set, you are going to extract regular signals from a noisy data set.

1. Download signal.dat (http://www.roe.ac.uk/∼ert/SignalProcessing/signal.dat).

2. Plot the signal, properly labelling the axes.

3. Compute the FFT of the signal.

4. Plot the FFT of the signal, with the axes properly labelled. The zero-th frequency
should be at the centre of the figure. Pay special attention to the frequency labelling.

5. Determine the frequencies of any real signals. Report their frequencies and ampli-
tudes (with errors). Errors should be one sigma. When determining the frequencies
of the real signals, I would like 95% confidence (i.e. 95% confidence that there is a
real signal with that frequency).

6. What does the spike at the zero-th frequency represent?

A note about the signal:

• One or more sinusoids on top of a noisy bias with a mean level of 1000 cts/s.

• All components of the signal are subject to Poisson noise.

There will be no perfect answer to this assignment. Just get as far as you can. I’m more
interested in revealing to you things you don’t know that you should, than determining
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for myself what you do. And not everything you need to know comes directly from the
notes.

Use whatever computational tools you want. There is more than one way to do this
project.

The writeup should be done in LATEX(or TEX), though I won’t necessarily be able to
tell the difference if you do a good job in another document preparation system. I want
publication-ready figures.

Books you may find useful for handling of error:

• Bevington & Robinson, “Data Reduction and Error Analysis for the Physical Sci-
ences”

• Taylor, “An Introduction to Error Analysis”

(5) [Hand-in to Joe Zuntz on Monday Nov 12]

1. If you roll a 20-sided dice and cube the value shown, what is the expectation of the
result?

2. The number of particles emitted by a radioactive source follows a poisson distribu-
tion. Element A emits on average 3.0 particles / minute / gram. Element B emits
on average 4.0 particles / minute / gram. You have two boxes of element A and one
box of element B. You have mixed up the three boxes at random, and taken out
from one of them 1g of an element. You measure its radioactive emission for one
minute and detect 5 particles.

(a) What is the probability that the source is element A?

(b) What is the expectation (mean) of the number of particles that will be detected
in the next minute of testing?

3. Consider another detector with some unknown efficiency f , and a material with
some unknown emission rate λ. The detector randomly detects each particle out of
the total number emitted nemit with probability f . Particles are initially emitted
following a Poisson process.

(a) What priors do you need to fully specify the problem?

(b) Draw a probabilistic graphical model (also known as a Bayesian Network)
showing the problem

(c) The code here: http://bit.ly/2xHPOos runs a very simple and inefficient Metropolis-
Hastings sampler. What priors does the the code assume?
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(d) What distribution does the code model the number of detected particles ndet

as following? Does this make sense? Why?

(e) Run the code to generate a Monte Carlo Markov Chain. Determine the mean
value and 95% one-tailed upper limit of the emission rate lambda.

(6) [Hand-in to Sadegh Khochfar on Monday Nov 19]

(a) Starting with the density of states in six-dimensional phase space, derive the equation
of state for a fully degenerate highly relativistic pure electron gas:

p = Kρ4/3,

where p is pressure, ρ is the total mass density, and K is a constant. Express K in
terms of fundamental physical constants, and show how the result changes if neutrons are
substituted for electrons.

How does p scale with ρ is the gas is non-relativistic?

(b) By comparing the degenerate equation of state with the ideal gas law, show that the
degree of degeneracy of a partially degenerate non-relativistic neutron gas increases as a
function of ρ/T 3/2, where T is the density and temperature of the gas.

(7) [Hand-in to Philip Best on Monday Nov 26]

(a) A diffraction grating is designed to operate at normal incidence at second order with
a central wavelength of 650 nm, such that the angle of diffraction is 45◦. Calculate the
line density required in the grating.

(b) Over what range of wavelengths can the grating operate without confusion between
spectral orders?

(c) If the aim is to achieve a spectral resolution of R = ∆λ/λ = 10000, what minimum
physical size of grating is required?

(d) The above setup is used to observe a star with an AB magnitude of 25 and a featureless
spectrum, using an 8m telescope. Assuming spectral sampling at 2 pixels per FWHM,
calculate the rate of arrival of photons per spectral pixel in the case of a perfectly efficient
spectrograph and telescope (a flux density of 1 Jy corresponds to an AB magnitude of
8.90).

(e) In practice, the light to be dispersed is selected by placing a slit in front of the
spectrograph. Provide a qualitative argument, on geometrical grounds, as to why this
broadens the FWHM of the spectrum.
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(8) [Hand-in to Ken Rice on Monday Jan 14]

(a) Assuming that a protostellar disc is isothermal and in vertical hydrostatic equilibrium,
show that the vertical scale height is given by h ∼ cs/Ω, where cs is the sound speed, and
Ω is the orbital angular frequency.

(b) At what particle size will a dust layer have a vertical thickness less than h in a disc
with a surface density Σ = 100 g cm−2 and an viscous α of α = 10−3? How will this
particle size vary with radius?

(c) What implication does the above have for the observation of protostellar accretion
discs?

(d) How does the growth timescale via settling vary with orbital radius?

(e) Consider a disc with mass Mdisc = πr2Σ and thickness h, at radius r from a star
of mass M∗. By approximating the self-gravity of the disc as that of an infinite sheet,
estimate the minimum Σ such that dominates the vertical acceleration of z = h. Hence,
show that

Mdisc

M∗
>
h

r
,

is a rough condition for when self-gravity matters for the vertical structure.

(f) Also show that the result in (e) can be recast as the standard Toomre criterion

Q =
cs
Ω
πGΣ ∼ 1.

(9) [Hand-in to Ross McLure on Monday Jan 21]

(a) Models of AGN accretion disks suggest that much of the X-ray radiation is liberated
at a radius of R ' 5Rs, where Rs is the Schwarzschild radius. Ignoring relativistic effects
and viscosity, show that if an object free-falls from infinity (and all its kinetic energy is
released as radiation at 5Rs) it will liberate ∼ 10% of its rest mass energy.

(b) An AGN has a 0.5–2 keV X-ray luminosity of 1039 Watts. Use the Eddington limit to
derive a lower limit to the mass of the central black hole. Assume a spectrum of fν ∝ ν−1

from the far-IR (100 microns) to hard X-rays (100 keV).

(c) Assuming the results of (a) and (b), what is the minimum time it would take a seed
black hole (10 solar masses) in the centre of a proto-galaxy to grow by accretion at the
Eddington rate to a size sufficient to power this quasar.
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(10) [Hand-in to Beth Biller on Monday Jan 28]

Please see Figures 1 and 2.
(a) Show that the transit duration for a non-central transit is:

tT =
PR∗
πa

√√√√(1 +
Rp

R∗

)2

−
(
a cos i

R∗

)2

where tT is the total transit duration, R∗ is the stellar radius, Rp is the planet radius, a
is the orbital semi-major axis, and i is the orbital inclination (where i=90◦ is “edge-on”).

(b) Show that the duration of the “flat part” of the transit light curve, i.e. the time when
the planet is fully superimposed on the stellar disk is:

tF =
PR∗
πa

√√√√(1− Rp

R∗

)2

−
(
a cos i

R∗

)2

(c) Describe why the impact parameter b is:

b =
a

R∗
× cos i

(d) Go to the following address: http://www.stefanom.org/systemic-live/ with your in-
ternet browser and click on ‘Open Systemic’. After registration, you will be taken to
the Systemic Console, where you will be carrying out the assignment. You can click on
the question mark icons to open help pop-ups that explain the function of each panel.
Note: if Systemic warns you that your browser might be too slow, please access the web-
site using the Google Chrome browser (http://www.google.com/chrome) or update your
browser. Follow along the tutorial at http://www.stefanom.org/51-pegged to fit your first
planetary model. What is the final period and mass of the planet you found?

(e) HD 69830 is a multiple-planet system with three low-mass planets. Using the Console,
find a three-planet fit to the data set that has the lowest possible chi-square. Print out
the RV curve and the picture of the orbit. Write down the χ2, RMS, and Jitter from
the window on the right-hand side. Select the ‘Dynamics’ panel and integrate your fit
for 1000 years using the stability checker. Is the system stable? Increase the mass of
the middle planet to one Jupiter mass (this makes the chi-square go way up). Is this
modified version of the system stable? Finally, compare your model planetary system to
the published model: http://exoplanet.eu/star.php?st=HD+69830.
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Figure 1: Definition of transit light-curve observables. Two schematic light curves are
shown on the bottom (solid and dotted lines), and the corresponding geometry of the star
and planet is shown on the top. Indicated on the solid light curve are the transit depth
∆F , the total transit duration tT , and the transit duration between ingress and egress
tF (i.e., the flat part of the transit light curve when the planet is fully superimposed on
the parent star). First, second, third, and fourth contacts are noted for a planet moving
from left to right (not needed for this problem set). Also defined are R, Rp, and impact
parameter b corresponding to orbital inclination i. Different impact parameters b (or
different i) will result in different transit shapes, as shown by the transits corresponding
to the solid and dotted lines.
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Figure 2: Transit planet schematic for deriving non-central transit parameters. Note the
definition of i for orbital inclination (i = 90◦ corresponds to edge-on). Figure from R.
Santana.
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(11) [Hand-in to Bob Mann on Monday Feb 4]

(a) Assuming that the nuclear factor S(E) is a slowly-varying function of energy E, show
that the reaction rate, RAB, for fusion of nuclei of types A and B, which is given by

RAB = nAnB

(
8

πmr

)1/2 ( 1

kT

)3/2 ∫ ∞
0

S(E) exp

[
− E

kT
−
(
EG

E

)1/2
]

dE

has a maximum contribution at energy E0 = (EG(kT )2/4)
1/3

.

(b) Sketch the integrand for RAB and show, through use of a Taylor expansion, that the
width of this peak, ∆, (also called the ‘fusion window’), is given by

∆ =
4

31/221/3
E

1/6
G (kT )5/6.

(c) The Gamow energy for nuclei of types A and B is given by EG = (παZAZB)22mrc
2,

where ZA, ZB are their atomic numbers, respectively, mr = mAmB/(mA + mB) is their
reduced mass, and α ' 1/137 is the fine-structure constant.

Calculate the energy, E0, in units of kT , at which most fusion reactions occur in the
following three cases: (i) p-p chain reactions at the Sun’s central temperature of T =
1.5 × 107K; (ii) the CNO cycle under the same conditions; and (iii) helium burning at
T = 108K.

(d) Show that, at constant nA, nB, the fusion rate per unit volume RAB scales as T β,
where

β =
(
EG

4kT

)1/3

− 2

3

and compute the value of β for the three reaction systems above.
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(12) [Hand-in to Avery Meiksin on Monday Feb 11]

The equations of stellar structure are:

(1) Equation of Continuity :
dM(r)

dr
= 4πr2ρ(r) (1)

(2) Equation of Hydrostatic Equilibrium :
1

ρ

dP

dr
= −GM(r)

r2
(2)

(3) Equation of Energy Generation :
dL

dr
= 4πr2ερ (3)

(4) Equation of Radiative Diffusion :
L

4πr2
= − 4ac

3ρκ
T 3 dT

dr
(4)

(a) Give the form of the equation of radiative diffusion in the case where the opacity is
dominated by electron scattering. For what class of stars is this a good approximation?

(b) Assuming the perfect gas law, show that the scaling of the structure equations in
this case implies the following relations between the total mass, total luminosity, radius,
central density and central temperature: ρcR

3 ∝ M (from continuity); ρcR
4Tc ∝ M2

(from hydrostatic equilibrium); ML ∝ T 4
c R

4 (from radiative diffusion). Hence show that
stars dominated by electron scattering should obey L ∝M3 independent of the mechanism
of energy generation.

(13) [Hand-in to Andy Taylor on Monday Feb 18]

(a) Write down Friedmann’s equation for the scale factor of the universe, R(t). Assum-
ing that the universe contains pressureless matter and vacuum energy only, rewrite the
equation in terms of the density parameters Ωm and Ωv.

(b) Hence show that if Ωm = 0.1 and Ωv = 1.5, then there could not have been a big
bang.

What is the highest redshift we could expect to see in such a universe? (This will require
some numerical experimentation.)

(c) The equation for a radial null geodesic in the Robertson–Walker metric is dr =
c dt/R(t).

Using the relation between redshift and scale factor, 1 + z ∝ 1/R(t), plus Friedmann’s
equation, deduce the differential relation between comoving distance and redshift:

R0 dr =
c

H0

[
(1− Ω)(1 + z)2 + Ωv + Ωm(1 + z)3 + Ωr(1 + z)4

]−1/2
dz.

(d) Integrate this expression for the case of the Ω = 1 Einstein–de Sitter universe. In this
model, calculate the apparent angle subtended by a galaxy of proper diameter 30 kpc, as
a function of redshift (recall c/H0 = 3000h−1Mpc). Show that there is a critical redshift
at which this angle has a minimum value.
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