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Abstract

Importance sampling is a useful technique for investigating the properties of a distri-
bution while only having samples drawn from a different (proposal) distribution. Such
methods are often used to estimate a posterior distribution in the framework of Bayesian
statistics and thus have important applications in model selection and parameter estima-
tion in the field of astronomy. In this lecture, I will introduce the the concept of importance
sampling by explaining in detail one of the most widely–used sampling techniques: the
Metropolis–Hastings Markov Chain Monte Carlo. I will discuss the advantages of the
technique over traditional grid-based analyses, and highlight some of the considerations
that must go into constructing a Markov Chain Monte Carlo. Finally, I will mention some
of the limitations of the algorithm and some alternative importance sampling methods
that aim to circumvent some of these problems.
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1 Introduction

1.1 What is Importance Sampling?

In statistics, importance sampling is the name for the general technique of determining the
properties of a distribution by drawing samples from another distribution. On the surface of it,
this seems like a strange thing to do — why would we want to sample from a distribution that
is different to the one we are investigating? The answer is that the distribution one draws from
should be (over a large enough sample size) representative of the distribution of interest, so we
can directly infer the desired properties of the second distribution from the first. There are a
multitude of techniques for producing such a representative distribution, but before discussing
some of these techniques in detail, we shall look at the reasons importance sampling is used in
statistical analyses.

1.2 Why is Importance Sampling Important?

Importance sampling is so widely utilised because in many cases in statistical analysis one does
not have a direct way of determining the properties of the distribution of interest. This is often
the case in parameter estimation or model selection problems where a Bayesian approach is
needed (as is standard practice in the field of cosmology). In order to fully appreciate the need
for importance sampling in these cases, we must briefly mention Bayes’ theorem. For some
data D with parameter(s) θ, Bayes’ theorem tells us that [1]

π(θ)L(θ) = EP(θ). (1.1)

Here π(θ) = pr(θ) is known as the prior probability, or prior, representing how we originally
distribute the parameters’ probability (pr(θ) denotes the probability of θ). The prior should
not depend on the data set D being investigated. One must first decide on the range of the
parameters θ which then defines a ‘hypothesis space’ over which the prior probabilities must be
distributed, with the only constraint that the sum of the probabilities is normalised to unity.
The choice of prior in a given analysis is often debated, and is usually influenced by data
from earlier experiments or observations. In the absence of any previous data to inform our
choice of prior, one often uses a ‘flat prior’ — to assign an equal probability to every region
of parameter space. L(θ) = pr(D | θ) is the likelihood, or probability of the data D occurring
given the parameters θ. Often, we can calculate the data value expected from known values of
θ, which allows us to calculate the likelihood of the data D for any given point in parameter
space. As we will see, the ability to calculate the likelihood in this way proves extremely useful
in importance sampling.

The evidence is given by E = pr(D) =
∫
π(θ)L(θ)dθ. This represents how well the priors

managed to predict the data, or the average of the likelihood over the whole parameter space.
The evidence is the normalising constant in Bayes’ theorem and as a result often does not
need to be calculated explicitly. Finally, the posterior probability, or posterior, is given by
P(θ) = pr(θ |D). The posterior represents the inferred distribution of probability amongst the
models in our parameter space, and it is this distribution that we are seeking to measure. The
posterior tells us which models are favoured over others, or which parameter values are a better
fit to the data than others. The focus of importance sampling then is to determine as easily
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Figure 1.1: Discrete, grid-based sampling of points in parameter space of x and y.

and accurately as possible the properties of the posterior from a representative sample from a
second distribution. It is worth noting that with a new data set, the identities of the terms in
Bayes’ theorem can shift — for example, the posterior derived from one data set can be used
as the prior for a new data set.

1.3 Grid-based Analyses

For a given hypothesis or parameter space, the most obvious way to probe the posterior dis-
tribution is to use a grid–based approach to calculating the likelihood. Here, one calculates
the likelihood of the data D at discrete, evenly–spaced points in the parameter space as shown
in Figure 1.1 for the two–dimensional parameter space of x and y. Although we have chosen
to vary two parameters in this example for ease of graphical representation, in principle there
is no constraint on the number of dimensions N in the analysis. We compare the expected
value of D for a given set of model parameters x1, y1 with the actual data vector D to find the
likelihood at point (x1, y1) and repeat for all points through to (xn, yn). This will give an idea
of the location of the best fit solution and the shape and position of the likelihood contours.

This is a simple way to estimate the posterior, but it has some serious flaws. The main
problem with this method is that the number of grid points needed scales exponentially with
the number of dimensions (assuming each dimension is the same size) and computation times
quickly become prohibitive. A further issue is the nature of gridding itself — how does one
decide where to sample the likelihood, and how finely spaced should one’s grid points be? We
run the risk of missing the ‘true’ best–fit solution if it lies between grid points.

The gridded likelihood calculation by its nature samples all of the parameter space evenly,
meaning much of our computing resources are wasted probing low likelihood regions of the
parameter space. Statisticians thus need a tool to help them sample multi–dimensional param-
eter spaces efficiently while building up a faithful representation of the posterior. Importance
sampling provides this tool. In order to understand how importance sampling works, its ad-
vantages and its limitations, in the next section we will consider one of the most widely–used
examples of the technique: the Metropolis–Hastings Markov Chain Monte Carlo (MCMC).
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Figure 2.1: Left : Starting point θ1 in x–y parameter space. Middle: Stepping randomly from θ1 to θ2
within proposal tophat distribution defined by ∆θx and ∆θy. Right: Stepping from θ2 to
θ3.

2 The Metropolis-Hastings MCMC Algorithm

The Metropolis-Hastings MCMC is a simple yet powerful method for importance sampling. In
this section I will go through the construction of the Metropolis-Hastings MCMC algorithm
in detail, which I will call MCMC for short. In doing so, I hope to aid in the audience’s
understanding of importance sampling in general and highlight some of the key issues that
need to be considered in its use.

Returning to our x-y parameter space that we considered when discussing gridded likelihood
analysis, we define a starting point for our algorithm. For simplicity, we choose a starting point
θ1 randomly anywhere within our x-y parameter space, as shown in the left of Figure 2.1.

We calculate the likelihood of this point in parameter space, then step to a new point, θ2.
This is done by drawing from a proposal distribution around θ1 and using a random number
generator to select a position in the x and y directions for the new point. For simplicity, it
is possible to use a box or tophat distribution defined by lengths ∆θx and ∆θy as shown in
Figure 2.1 (middle). The size of the box is decided by the user, and is something that can (and
should) be optimised to make the MCMC converge as quickly as possible. We will discuss a
technique for finding a good proposal distribution later on. For now, let us choose a box size
that is considerably smaller than our parameter space but not prohibitively small.

We then perform the crucial step in the MCMC – we either accept or reject the new point.
This is done by calculating the ratio of the likelihoods of θ1 and θ2, such that if the new point
has a higher likelihood than the old it will be accepted with a probability of 1, otherwise the
probability of the point being accepted is equal to the ratio of the likelihoods. Formally this
means that

P (θi, θi+1) = min

{
1,

L(θi+1)q(θi+1, θi)

L(θi)q(θi, θi+1)

}
(2.1)

where q(θi, θi+1) is the proposal density distribution. For the MCMC, we do not change the
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proposal distribution from one iteration to the next so q(θi, θi+1) = q(θi+1, θi) and therefore

P (θi, θi+1) = min

{
1,

L(θi+1)

L(θi)

}
. (2.2)

It is this selection criterion that gives the Metropolis-Hastings algorithm its name. If θ2 is
rejected, then the chain moves back to θ1 and selects another point within the proposal dis-
tribution at random, calculates the new likelihood and applies the selection criterion again
and again until a point θ2 is accepted. Then the algorithm uses θ2 as its new starting point
and selects another point, θ3, in the chain from the proposal distribution centred around θ2,
as shown in the right hand side of Figure 2.1. The ‘Markov Chain’ in MCMC refers to this
stepping behaviour; the steps should be discrete, random and the proposal distribution q(θi) a
function of current position θi only. The ratio of points accepted vs. points tried gives us our
acceptance rate. If we are running a chain of n (accepted) points, we want an acceptance rate
as high as possible as this will take us to our nth point faster. For example, an acceptance rate
of 50% means that we will have to perform 2n iterations to achieve a total chain of length n.

The MCMC proceeds in this way until we have built up a collection of points in the param-
eter space that are sufficient to be used in a likelihood analysis (see Figure 2.2 (left) ). This
is possible because of the elegant fact that the density of points in a given region of parame-
ter space is directly proportional to the likelihood of that region, thanks the the Metropolis-
Hastings selection criterion. This ensures that the MCMC is by nature ergodic, meaning that
any state (point in parameter space) is eventually reachable from any other with a probabil-
ity of greater than zero. Ergodicity is important because we need to do more than just find
the ‘best fit’ solution — we need to sample the area around a likelihood peak to accurately
represent all of the posterior. Thus in principle all of parameter space can be reached and the
distribution of our MCMC points should approximate the posterior distribution we are seeking.
There are several methods for drawing likelihood contours from the posterior, including using
standard χ2 values to determine contours, however one of the simplest and most reliable ways
is to bin the samples on a grid to produce a 2D histogram, and draw contours around the grid
points that contain the top (for example) 68% and 95% of points to produce your 68% and
95% contours (see Figure 2.2 right). This method works well assuming that the distribution of
points faithfully reproduces the posterior distribution. In order for this to be the case, however,
there are some additional checks we have to perform.

2.1 Convergence

To ensure that our MCMC chain is both robust and accurate, it must be convergent. This
means that the chain has been run long enough to generate a distribution of independent
points that closely match the posterior distribution. There is however no single conclusive test
that can be run on the results of an MCMC that will tell us if convergence has been reached.
One easy test that we can perform is to run multiple chains, each with different random starting
points, and compare the results. The variance between the chains should be much smaller than
the posterior uncertainty on our measured parameter(s). This idea has been formalised in the
form of the Gelman-Rubin statistic R =(variance between chains)/(mean variance within the
chains). Typically, R should be as close to 1 as possible; preferably R < 1.03. MCMC chains
will take some time to ‘burn-in’ (see next section) so the Gelman-Rubin test is commonly
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Figure 2.2: Left : A chain of points in parameter space from MCMC. Right : Sketch of example likeli-
hood contours from MCMC points.

performed on the last half of the points in the chain. Alternatively, we can apply a Gelman-
Rubin test to a single chain by splitting up the chain and applying the statistic to each part.
One can also calculate the correlations between points in the chain as a function of chain length.
The distance over which the correlations between parameters drops to 1/e gives a measure of
the correlation length, which should be shorter than the chain length if convergence is to be
achieved.

The number of chains needed for stability and convergence is not set in stone. It is possible
to have several long(ish) chains or one very long chain, as long as either method can pass
(multiple) convergence tests. Ideally, we would run both a very long chain and several shorter
ones for the same data set and check that both methods give equally reliable results.

2.2 Burn-in

As we have alluded to in the last section, the MCMC chain will suffer from a ‘burn-in’ at the
start of the chain during which the points will not trace the posterior distribution well. This is
due to the random nature of the starting point; there is a high chance that the chain will start
far from the peak of the likelihood and the first nb points in the chain will be over–representing
a region of lower likelihood. Furthermore, these early points will be correlated (and therefore
not independent), as the value of one point will strongly affect the value of the next as they
converge towards high likelihood values. For this reason, it is common practice to discard these
nb points from our chain(s) to ensure that they do not bias our likelihood analysis. The question
remains as to how large nb should be made to safely ensure no contamination from burn-in. nb

may be as high as half the entire chain length, but often a much shorter burn-in will suffice.
Visual inspection of the data can give us strong clues as to how much burn-in needs to be taken
into account. For example, in Figure 2.3 the chain begins to obviously converge on a value
of x after about 200 iterations. Finding the optimum burn-in length may thus require some
experimentation.
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Figure 2.3: Example results from MCMC chain for a parameter x. The burn-in can be clearly seen in
the first 200–300 iterations [2].

It is also possible to set up an MCMC to have no burn-in. If we know approximately where
the peak of the likelihood surface is (either from knowledge of priors from other data sets or
from running a short MCMC ‘test chain’ to get a feel for the location of the peak first) then
we can legitimately select a starting point by centering our proposal distribution on the peak
and selecting the first point randomly from this. This potentially makes our chain biased, but
the end result (representative sampling of the posterior) is the same [2].

2.3 The Proposal Distribution

In our example above we used a simple box proposal distribution, and intuitively guessed an
appropriate size for it from which to draw our points. However, when testing an MCMC one
soon discovers that the ‘acceptance rate’ of the algorithm is strongly dependant on the choice of
proposal distribution and hence there is much room for optimisation. We find that the optimal
proposal distribution is one which closely matches the posterior distribution. Why should this
be so? Consider a situation where we are investigating two parameters that happen to be highly
correlated. There may be a strong degeneracy along a certain axis in parameter space, such as
that between the cosmological matter density parameter Ωm and the matter power spectrum σ8

as shown in Figure 2.4 left. Drawing a tophat distribution around a point in the chain will make
it hard for the MCMC to step away from this point, as the probability that it will attempt to
step to an area of lower likelihood is high. If we are able to select a proposal distribution that
closely follows the posterior in both size and shape (in this case, a bivariate Gaussian), this
makes it much easier to step to a new point with high likelihood, thus increasing the acceptance
rate of the algorithm (see Figure 2.4 right).
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Figure 2.4: Left : Tophat proposal distribution gives a poor acceptance rate for the Ωm–σ8 degeneracy
from weak lensing (Likelihood contours from [4]). Right : A bivariate Gaussian distribution
results in fewer rejections.

The size of our proposal distribution influences both the acceptance rate and the ease with
which a chain converges. A very small proposal distribution will only allow the chain to make
tiny steps, which means that although the acceptance rate will be high as nearby points have
very similar likelihood values, the chain will take many iterations to explore the parameter
space. Thus the chain will take a long time to converge. Conversely, a very large proposal
distribution will allow the chain to step easily into different regions of the parameter space, but
as soon as the chain finds a point of high likelihood stepping away from it will become very
difficult. If L(θi) is relatively high and θi+1 is located far from θi, then L(θi+1) will often be
much lower than L(θi) and hence is unlikely to be accepted. Such a chain will therefore also take
a long time to run to convergence due to a lowered acceptance ratio. The optimum proposal
distribution size is something that must be determined by intuition and experimentation. It is
worth noting that since the choice of proposal distribution only influences the acceptance rate,
it does not bias the posterior in any way as long as the MCMC is convergent.

If we have good priors on the data and know the expected posterior, it is easy to come up
with an adequate proposal distribution. Otherwise, we can run a short chain using a tophat
distribution and use the posterior from this to produce our improved proposal distribution for
a much longer, convergent run. The proposal distribution itself is often optimised in the form
of a (multivariate) Gaussian found from principal component analysis of the posterior1. A
Gaussian proposal distribution is often a good first order approximation to the posterior, but
is not always appropriate and in some cases exploration of the parameter space may still be
very slow.

1for an explanation of principal component analysis, see for example [3].
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2.4 Priors

As we have thus far taken a Bayesian approach to importance sampling, our investigation of
the MCMC algorithm would not be complete without a word about priors. For clarification,
the priors chosen on x and y in Figures 2.1-2.2 are simply flat and limited by the edges of the
parameter space. As stated earlier, this is a common starting point in parameter estimation
if no other information is known. The edges of the parameter space may be constrained by
limitations in simulations, or bound a region that encompasses all physical solutions.

Often, we may be attempting to constrain our parameters x and y whilst at the same time
marginalising over other ‘nuisance’ parameters. For example we may be interested only in
constraining Ωm and σ8, but these depend on the values of other cosmological parameters such
as the dimensionless Hubble constant h0. In this case, there are two possible courses of action.
One is to let h0 vary along with Ωm and σ8 and then simply ignore the values of h0 when plotting
our likelihood contours - this is marginalisation. The other is to set a prior on the nuisance
parameter(s), if possible, from previous data analyses. In this case, we might decide that h0

has already been well constrained to a value of 0.71 [5] and thus set h0 = 0.71. However, there
will most likely be very few samples in our chain for which h0 = 0.710000000 precisely, and it
may be better practice to use a narrow prior of 0.70 < h0 < 0.72 instead. This is equivalent
to assigning a tophat distribution to h0 over a very small region of parameter space. Adding a
little more sophistication to our prior on h0 might include using the Gaussian error on h0 and
therefore a Gaussian prior for h0 with a standard deviation of 0.025 [5]. Constraining nuisance
parameters using priors will lead to tighter constraints in our likelihood analysis, however we
must be confident in our choice of priors to ensure we are not sacrificing accuracy for false
precision.

2.5 Caveats

Whilst the number of points needed in grid-based likelihood analyses scales exponentially with
dimension number, chain lengths required for convergence in MCMC scale, at best, linearly with
dimension number. This is assuming we have an optimised proposal distribution; in reality the
scaling will be worse and despite its advantages over a grid-based approach, MCMC can be
very slow to converge for high dimensions. In addition, as we have already stated MCMC is
not robust to the choice of proposal distribution and this can further slow us down on our quest
for convergence.

Another limitation of the MCMC is its difficulty in both probing long tails of a posterior
and in dealing with multi-peaked distributions; although the Metropolis-Hastings selection
criterion is designed to allow the chain to pass through areas of low likelihood, in practise the
MCMC does not sample multiple peaks well. A chain that does not happily sample the full
posterior is said to be poorly mixing. One possible solution to a poorly mixing chain is to run
multiple chains, each starting in different regions of parameter space in the hope that they will
collectively sample all the peaks and regions of the likelihood surface.

Despite its limitations, the Metropolis-Hastings MCMC is a powerful statistical tool if used
correctly. A whole host of other methods and algorithms exist, however, in order to overcome
some of the limitations of MCMC, and we will briefly mention some of these in the next section.
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3 Other Important Importance Methods

3.1 Hamiltonian Monte Carlo

The Hamiltonian Monte Carlo, or Hybrid Monte Carlo (HMC) is a Monte Carlo method that
addresses the low efficiency of the Metropolis–Hastings MCMC in high dimensions and its low
acceptance rate. In this method, each chain position xi is randomly assigned a momentum ui,
and we define a potential energy

U(x) = −lnP(x) (3.1)

where P(x) is the posterior or target distribution we are attempting to sample from [6]. As
before, we approximate the form of P(x) with our proposal distribution, which may be found in
advance from, for example, running a short MCMC chain and performing a principal component
analysis on the resulting cloud of points as described in Section 2.3. We can then define
the Quantum Mechanical Hamiltonian, H(x,u) = U(x) + K(u) where K(u) = uTu/2 is
the kinetic energy. This is then used to draw samples from an extended target distribution
P(x,u) ∝ exp(−H(x,u)). With our assigned momentum vector, we then follow a trajectory
in (x,u) phase space, keeping H(x,u) constant. The time evolution of the system is governed
by the Hamiltonian equations of motion

ẋi = ui (3.2)

u̇i = −∂H

∂xi

.

In practise the algorithm proceeds by leap–frogging through a series of finite steps in time.
One can visualise the likelihood surface of the posterior as a potential well, such that the
higher the likelihood value at a given point, the deeper the potential as given by Eqn. (3.1).
The time–evolution of the algorithm takes it through a region of constant H(x,u) within that
surface until a new point in the chain is reached. Then a new, random momentum is assigned
and the chain proceeds on another path through phase space to ensure the chain does not
get trapped in an ellipse of constant H(x,u). In essence, the HMC is an MCMC with a
different proposal distribution and a phase space of 2N dimensions instead of N due to the
presence of the momentum term. To obtain the posterior P(x) after a chain has been run, one
simply marginalises over the momentum coordinates in P(x,u) to obtain our desired real–space
posterior P(x).

The HMC has the advantage that because the total energy of the system H(x,u) is kept
almost constant then for two points in the chain, the likelihoods L(xi) and L(xi+1) will be almost
identical and the acceptance ratio will be close to one. The energy is not perfectly conserved
from point to point, however, because of the inexact, numerical nature of the leap–frogging
behaviour. Conserving H(x,u) also depends on having a full knowledge of the posterior, but
of course this is what we are trying to measure with an approximation (the prior distribution).
Because the HMC can take relatively large step sizes in parameter space with a high acceptance
rate, it can sample the space effectively and without doubling back on itself as the MCMC does
due to its random walk nature. Finally, the efficiency of the HMC also scales well with dimension
number, so it may be well suited to multi–dimensional analysis.
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3.2 Nested Sampling

Nested sampling is a relatively new algorithm [1] and proceeds by generating an array of n
points (θ1, θ2, ..., θn) in the parameter space. The likelihood of each point is calculated, and
the point with the lowest likelihood L(θi) is discarded. Then, a new point θ′i is generated by
taking a random step from one of the other points and is accepted iff L(θ′i) is equal to or
greater than the likelihood of the discarded point. This ensures that over repeated iterations,
the likelihood contours from the n points move progressively inwards towards the peak of
the likelihood (hence the name). One calculates the cumulative evidence after each iteration
until some stopping criteria have been reached, then the posterior is estimated by weighting
each point according to its likelihood width (the width is determined by the distance from a
point’s nearest neighbour). Nested sampling is a robust technique that copes well with ‘difficult
posteriors, such as multi–peaked or highly correlated distributions. It also requires less manual
tuning than some other importance methods such as the MCMC. Like MCMC, however, it can
be slow [7].

3.3 Simulated Annealing

‘Simulated Annealing’ is so named because of the parallel between the way in which a metal
cools and freezes into a minimum energy crystalline structure (the annealing process) and the
search for a minimum in a system such as our parameter space. By analogy, L = exp (−energy).
For a given energy E and ‘temperature’, T , a perturbation is added and the change in energy
calculated. If the change in energy is negative, the new configuration is accepted; if it is positive,
it is accepted with a probability given by the Boltzmann factor exp (−dE/T ). This process is
repeated for multiple sampling points, then the temperature is reduced and the process repeated
until T = 0 is reached and the system has the minimum possible energy (and hence the highest
possible likelihood). Simulated Annealing has the advantage that it is good at avoiding become
trapped on local minima (likelihood peaks) due to the selection criterion.

4 Conclusion

In this lecture, I have introduced the concept of importance sampling and illustrated its signif-
icance in Bayesian model selection and parameter estimation. Importance sampling methods
offer significant advantages over grid–based analyses due primarily to their vastly improved
computing times. By describing the individual steps that make up one of the simplest and
most widely–used importance sampling methods, the Metropolis–Hastings MCMC, I have high-
lighted the importance of one’s choice of priors and proposal distribution. Optimising the pro-
posal distribution will lead to substantial gains in efficiency and computing time, and careful
consideration of the priors will ensure more a more accurate posterior approximation. One
hopes that the distribution generated from importance sampling will accurately reflect the true
posterior, which is why testing for convergence is so important. In addition to the MCMC
there are a multitude of other importance sampling methods which include the HMC, nested
sampling and simulated annealing, as well as many others which can serve as invaluable tools
in parameter estimation.
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