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1 Introduction

Accretion discs are ubiquitously found around a variety of astrophysical systems: Young Stellar Objects
(YSO), supermassive black holes in AGN, binary systems, stellar mass compact objects in our Galaxy,
Saturn’s rings and etc. Also galactic discs can be considered as special cases of accretion discs. Generally
they play very important role, for example, accretion discs around compact objects determine emitted
radiation from these objects (e.g., X-ray sources) and in the case of YSO they represent sites of planet
formation. Accretion disc forms because infalling on a central object matter always has some angular
momentum, so it cannot accrete directly unless somehow gets rid of the latter. As a result, the matter
settles into a flattened rotating configuration, or a disc. After settling into disc shape, accretion primarily
proceeds through such a disc by redistribution of angular momentum so that matter nearer the central
object and falling onto its surface gives up angular momentum to outer parts of the disc. During this
process disc spreads, because small amount of matter should eventually carry all the angular moment
outwards, while the rest of the mass losing angular momentum falls onto the star (Lynden-Bell & Pringle
1974, Pringle 1981).
Usually discs are subject to various instabilities such as: gravitational, magnetorotational (MRI), purely
hydrodynamical and convective instabilities that, in turn, cause turbulence in discs that ensures outward
transport of angular momentum. The effect of turbulence on the angular momentum transport can
be characterized by so-called turbulent viscosity (we will show below that ordinary molecular viscosity
of gas is far too small to yield typical timescales of secular evolution of accretion discs). Turbulence
plays a dual role here, first it is responsible for outward angular momentum transport necessary for
accretion to proceed; instabilities when developed into turbulent regime exert strong torques on the disc
able to redistribute angular momentum to large radii. Secondly, it provide a channel of conversion of
gravitational energy liberated as mass falls onto the star into thermal energy. The dissipated energy, in
turn, contributes to the emitted radiation that can be observed and measured. However, here we do not
go into details about an exact origin of turbulent viscosity. Instead, we describe in detail the process of
the above mentioned redistribution of angular momentum brought about by the action of such turbulent
viscosity by adopting for the latter different phenomenological expressions. This allows us to understand
key features of viscous evolution of accretion discs without knowledge of an exact origin of viscosity.

2 Basic equations

In order to get insight into how viscosity (irrespective of its origin) acts to transport angular momentum
outwards, following Lynden-Bell & Pringle (1974), Pringle (1981) and Frank et al. (2002), let us start
with the simplest model of accretion disc – a razor thin gaseous disc rotating around a central star
with considerably larger mass M so that disc self-gravity can be neglected. We adopt cylindrical polar
coordinates (r, φ, z) with central star at the origin. The disc lies in the z = 0 plane. The razor thin disc
approximation implies that the disc scale height H = cs/Ω, where again cs is the sound speed and Ω is
the angular velocity of disc rotation (this expression for H is easily obtained from the vertical hydrostatic
equilibrium) is much smaller than the distance from the central star H/r << 1. In protoplanetary discs,
for example, this ratio is typically H/r ∼ 0.05−0.1 and in AGN discs it is even smaller, H/r ∼ 0.001−0.01,
so the condition for thin disc limit is more or less satisfied. Many studies are limited just to this
approximation, because it helps to understand basic physical processes and instabilities, which can be
then generalized to thick discs. In this case basic hydrodynamic equations are integrated in the vertical
direction to yield two dimensional equations. The disc is then characterized by its surface density Σ,
which is a mass per unit surface area of the disc, given by integrating the gas density in the vertical
z−direction. The thin disc approximation is equivalent to requiring that the sound speed cs is much less
than the rotation velocity rΩ(r), or the disc flow is strongly supersonic. From this condition one can
readily find that the rotation velocity is given by Kepler law (Pringle 1981, Frank et al. 2002):

Ω(r) = ΩK(r) =
(

GM

r3

)1/2

.

In this case a disc is said to be rotationally supported, i.e., gravity force exerted by the central star
is balanced by centrifugal force due to rotation. Because of the thin disc approximation, the pressure
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gradients turn out to be much smaller than these two forces. The disc being accreting implies that
in addition to Keplerian velocity it also possesses radial, or ’drift’ velocity vr directed to the central
star. As will be clear below, this radial velocity is much smaller than Keplerian velocity so the ordering
vr << cs << rΩK holds and is directly related to the viscosity parameter ν implying that accretion takes
place on time scales longer than dynamical time Ω−1. The disc is assumed to be axisymmetric, so that
all variables are functions of only radius r and time t (z dependence is absorbed by vertical averaging).
The continuity equation for the surface density Σ(r, t) is:

∂Σ
∂t

+
1
r

∂

∂r
(rΣvr) = 0. (1)

We also need another equation for angular momentum conservation, which can be similarly derived. The
only difference is that we should include now viscous forces proportional to ν. As a result, we obtain:

∂

∂t
(Σr2Ω) +

1
r

∂

∂r
(rΣvrr

2Ω) =
1
r

∂

∂r
(νΣr3Ω′), (2)

where the prime at Ω denotes derivative with respect to r. The term on the right hand side represents
torques exerted by viscous forces on gas. Eqs (1)-(2) can be combined to yield a single equation for
surface density evolution:

∂Σ
∂t

=
3
r

∂

∂r

[
r1/2 ∂

∂r
(νΣr1/2)

]
. (3)

In deriving this equation we have made use of the fact that the rotation is stationary and Keplerian. This
is the basic equation governing the time evolution of surface density, or mass transport, in a Keplerian
disc due to some kind (generally turbulent) of viscosity characterized by ν. In general, equation (3)
is a nonlinear diffusion-type equation for Σ, because ν is not necessarily constant and can be a very
complex function of local variables (surface density, radius, temperature, ionization fraction etc.) as it
typically happens for effective viscosity due to turbulence. So, generally this equation should be addressed
numerically. However, if viscosity can be expressed as a power of radius then analytic solutions are feasible
(Lynden-Bell & Pringle 1974). This simple case allows us to get the general feeling of angular momentum
evolution. In the following subsections we consider different prescriptions for viscosity.
The radial velocity is proportional to viscosity and therefore is small:

vr = − 3
Σr1/2

∂

∂r
(νΣr1/2) ∼ ν

r
. (4)

We can also estimate a typical timescale of viscous/secular evolution of a disc

tvisc. ∼ r

vr
∼ r2

ν
.

It easy to derive the energy dissipated due to viscosity per unit area per unit time at some r, or energy
dissipation rate,

Q(r) =
1
2
νΣ(rΩ′)2. (5)

Obviously, this heat produced during the accretion process ultimately originates from the gravitational
energy released as the matter falls into the gravitation well of the central object and contributes to the
formation of emitted spectrum that is an important observational characteristics of discs (see section 4).
The above analysis shows that viscosity is very important for disc evolution. It is one of the main agents
responsible for outward transport of angular momentum. However, the major unresolved problem here
is the physical origin of ν viscosity. It was soon realized that standard molecular viscosity is unable to
provide appropriate timescales for disc evolution; it is far too small and therefore viscous time scale in this
case too big compared with observed disc lifetimes. To demonstrate the case, let us do some estimates
for protoplanetary discs around YSO. Indeed, standard molecular viscosity is given by ν ∼ λcs and the
ratio of viscous and dynamical times by tvisc/tdyn ∼ r2/(Hλ) ∼ Re, where Re ≡ Ωr2/ν is the Reynolds
number of disc flow, the mean free path for a typical protoplanetary disc is λ ∼ 1/nσ = 2.5 cm (for the
number density n ∼ 4 ·1014 cm−3 of molecules having cross-section σ ∼ 10−15cm2) and H/r ∼ 0.05. If we
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now take r ∼ 1 AU, we obtain tvisc/tdyn = Re ∼ 1014. Since the dynamical time scale for protoplanetary
discs is of the order of a few years, the tvis turns out to be of the order of age of Universe. Evidently,
molecular viscosity is so small that can not provide an adequate evolutionary timescale comparable to
the disc lifetime 106 − 107 yr. This means that there should exist some other mechanisms capable of
producing orders of magnitude larger, or anomalous, viscosity and angular momentum transport that
will be consistent with disc lifetime measurements.
The very large Reynolds number Re ∼ 1014 for disc flows may offer a clue to resolve this problem. It
is well known from laboratory experiments that if the Reynolds number is gradually increased, it can
reach a critical value typically of the order of 103 − 104 after which the flow becomes turbulent: velocity
undergoes large and chaotic variations on arbitrary short time and length scales. Thus, given such a
huge value for disc Reynolds number compared with its threshold values in laboratory experiments, it
is natural to assume that disc flow is strongly turbulent as well. In this case the turbulent flow will be
characterized by the size λt and turnover velocity vt of largest eddies. This turbulent flow is superimposed
on the main background Keplerian rotation just as small chaotic motions of molecules are superimposed
on the mean laminar flow. In analogy with this picture we can define the turbulent viscosity as νt = λtvt.
Because the size of turbulent eddies λt is many orders of magnitude larger than mean free path, we expect
the turbulent viscosity to be considerably larger too than the molecular viscosity so that it can provide
anomalous transport of angular momentum. However, since generally turbulence is a very complex
phenomenon, we do not know how to exactly determine the sizes and velocities of eddies without proper
knowledge of what are the underlying physical mechanisms causing the transition to turbulence in discs.
Although, so far we have assumed its hydrodynamic origin, as detailed investigations have shown over the
last two decades, turbulence and, therefore turbulent viscosity mostly occurs due to magnetorotational
and gravitational instabilities and possibly due to convective instability too. The reason for not believing
in its purely hydrodynamical origin is that it has been shown in many studies that Keplerian differential
rotation of a gas in the absence of magnetic fields and self-gravity is stable both linearly and nonlinearly
that, in turn, precludes the onset of turbulence. Nevertheless, whatever the origin of turbulent viscosity,
we can put constraints on these two quantities. First, the typical size of the largest turbulent eddies can
not exceed disc thickness H, otherwise turbulence would not be isotropic and transport local, i.e., the
characterization of turbulent transport in terms of viscosity coefficient would not be possible; so λt < H.
Secondly, it is unlikely that turbulence in discs is supersonic, because in this case strong shocks would
appear and damp turbulence to subsonic values; so vt < cs. Based on these two basic arguments, Shakura
& Sunyaev (1973) suggested the following parameterization of turbulent viscosity:

ν = αcsH,

where α is some constant generally less than unity, because of the above discussed constraints on the
size and velocity of turbulent eddies. This formula is so-called α-prescription for turbulent viscosity.
Observations indicate that α ∼ 0.01 for protoplanetary discs, which yields disc evolutionary time scale
exactly of the order of disc lifetime. In fact, α contains in itself all the uncertainties regarding the onset
mechanism and properties of turbulence in discs. Nonetheless, the α−prescription has provided a useful
parametrization of our ignorance of an exact nature of turbulence and has encouraged a semi-empirical
approach to the viscosity problem, which seeks to estimate the magnitude of α by a comparison of theory
and observations. However, below, as noted above, we consider only general consequences of viscous
evolution adopting different phenomenological expressions without knowing its exact origin.

3 Viscous evolution

3.1. Constant viscosity

In order to get first insight in the effects of voscosity on angular momentum transport and secular
evolution of a disc, let us first consider a highly simplified case of spatially uniform ν = const. Here we
follow Frank et al. (2002) in derivation of equations. Then Eq. (3) can be rewritten as

∂

∂t
(r1/2Σ) =

3ν

r

(
r1/2 ∂

∂r

)2

(r1/2Σ),
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Figure 1: The viscous evolution of a ring of matter of mass m placed initially in a Keplerian orbit at
r = r0. As evident, the ring gradually spreads out under the action of viscous torques. The surface
density is shown as a function of normalized radius x = r/r0 at four different moments τ = 0.004, τ =
0.016, τ = 0.064, τ = 0.256, where τ = 12νt/r2

0 (after Pringle 1981).

thus setting s = 2r1/2, this equation becomes

∂

∂t
(r1/2Σ) =

12ν

s2

∂2

∂s2
(r1/2Σ),

Hence we can separate variables r1/2Σ = T (t)S(s), finding

T ′

T
=

12ν

s2

S′′

S
= const = −λ2.

The separated functions T and S are therefore exponentials and Bessel functions respectively.
It is interesting to find the Green function, which is by definition, the solution for Σ(r, t) taking as the
initial matter distribution a ring of mass m at r = r0:

Σ(r, t = 0) =
m

2πr0
δ(r − r0),

where δ(r − r0) is the Dirac delta function. Standard methods give

Σ(x, τ) =
m

πr2
0

τ−1x−1/4exp

(
−1 + x2

τ

)
I1/4(2x/τ) (6)

where I1/4(z) is a modified Bessel function and we have used the dimensionless radius and time variables
x = r/r0, τ = 12νt/r2. Fig. 1 shows Σ(x, τ) as a function of x for various values of τ . We can see from
this figure that viscosity has the effect of spreading the original ring in radius on a typical time scale

tvisc ∼ r2/ν

as estimated above from a general formula (4). This obtained by setting (1 + x2)τ−1 ∼ x2τ−1 ∼ 1 in
the argument of the exponential in Eq. (6). Now that Σ is known, we can easily find radial velocity
determining mass inflow into the center. From Eq. (4) we have for ν = const:

vr = −3ν
∂

∂r
ln(r1/2Σ) = −3ν

r0

∂

∂x
ln(x1/2Σ) =
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= −3ν

r0

∂

∂x

(
1
4
lnx− 1 + x2

τ
+ lnI1/4

(
2x
τ

))
.

The asymptotic behaviour, I1/4(z) ∝ z−1/2ez at z >> 1 and I1/4(z) ∝ z1/4 at z << 1, now shows that

vr ∼ 3ν

r0

(
1
4x

+
2x

τ
− 2

τ

)
> 0, at 2x >> τ

vr ∼ −3ν

r0

(
1
2x

− 2x

τ

)
< 0, at 2x << τ.

Hence, the outer parts of the matter distribution (2x >> τ) move outwards, taking away angular momen-
tum of the inner parts, which move inwards towards the accreting star. Moreover, the radius at which vr

changes its sign moves outwards itself, for if we choose some point at which x initially much greater than
τ , after sufficient time this same point will have x much less than τ . Thus parts of the matter distribution
which are at radii r > r0 just after the initial release of the ring (t ∼ 0) at first move to larger radii,
but later begin to lose angular momentum to parts of the disc at still larger radii and thus drift inwards.
At very long times (τ >> 1) after the initial release, almost all of the original m has accreted on to the
central star (r ∼ 0), while all of the original angular momentum has been carried to very large radii by
a very small fraction of the mass. We will confirm that this general trend of disc viscous evolution holds
even for radially varying viscosity coefficient.

3.2. Radially varying viscosity

Now consider more general case where ν is given as a power law of radius,

ν = ν0

(
r

r0

)γ

≡ c0r
γ .

Such a dependence is expected from the fact that typically in discs sound speed has a power law depen-
dence itself and, hence scale height also follows this trend (angular velocity of disc rotation is Keplerian
≡ r−3/2, while the α is approximately constant with radius). For the convenience of further analysis,
following Lynden-bell & Pringle (1974) let us change independent variables: h = r1/2 and g = νΣr1/2.
After this Eq. (3) is rewritten as

∂2g

∂h2
=

4h2(1−γ)

3c0

∂g

∂t
.

If we now assume that time variation is given by g ∝ e−st, we have

∂2g

∂h2
+

4sh2(1−γ)

3c0
g = 0.

If we now set x = h2−γ and g1 = x1/2(γ−2)g, we again obtain Bessel’s equation

d2g1

dx2
+

1
x

dg1

dx
+

(
4s

3c0
− 1

4x2

)
g1

(γ − 2)2
= 0

The general solution for this equation is given in terms of Bessel functions for each s supplemented with
boundary condition that g vanishes at the origin r = 0 (or more precisely at the edge of the boundary
layer between disc and star surface). On the other hand, time-dependent solution is a linear combination
of Bessel functions with different s. However, from this general solution its hard to extract information on
the key properties of angular momentum transport. In order to clearly understand the latter we restrict
ourselves to the time evolution of a special solution resulting from the following initial distribution for g:

g(h, 0) = Ch · exp(−ah2(2−γ)) = Cx1/(2−γ)exp(−ax2),
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Figure 2: Radial velocity (upper plot) and surface density (lower plot) as a function of radius (here these
variables are denoted as u and σ instead of vr and Σ respectively). The distributions are plotted for three
different moments and spheres at r = 0 have volumes corresponding to the mass that has fallen from the
disc onto the central star (after Lynden-Bell & Pringle 1974).

where C and a are some positive constants. Since g should be vanishing at large distances, we require
γ < 2. It is easy to show that this is equivalent to the initial surface density distribution of the form

Σ(r, 0) =
C

c0rγ
exp(−ar2−γ)

After some algebra we arrive at the following analytic solution

g(h, t) = CT−
(2γ−5)
2(γ−2) x1/(2−γ)exp(−ax2/T ),

where T = 1 + 3ac0t(γ − 2)2 is a dimensionless time. In terms of the physical variables this solution is

g = CT−
2γ−5

2(γ−2) h · exp(−ah2(2−γ)/T )

Σ =
g

hν
=

g

c0h2γ+1
(7)

vr = − 3
2Σh2

dg

dh
= −3c0h

2γ−1

2g

dg

dh
= −3c0h

2(γ−1)

2

(
1− 2(2− γ)ah2(2−γ)

T

)
.

We see from this formula that at a given moment the radial velocity is directed outwards for h >
(T/2a(2 − γ))1/2(2−γ) and inwards inside that radius. This point of velocity reversal moves out as T
increases and overtakes more and more material. As a result, at asymptotically large times almost all
material moves inwards and only a negligible amount moves outwards carrying all the angular momentum.
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Figure 3: Trajectories of different fluid elements of the disc as functions of time. The fluid elements that
start with negative radial velocity move inwards at all times, whereas elements that start with positive
radial velocity first move outwards, give up angular momentum to farther elements, then turn and move
inwards (after Lynden-Bell & Pringle 1974).

To illustrate this let us calculate the angular momentum distribution in this solution. The total angular
momentum within r is given by

l =
√

GM

∫ r

0

2πr′Σh(r′)dr′ =
4π
√

GM

c0

∫ h

0

gh′3−2γdh′,

or if we introduce the variable y = ah2(2−γ)/T ,

l =
4Cπ

√
GM

c0a(2γ−3)/2(γ−2)

∫ y(T,h)

0

y′
1

2(2−γ) exp(−y′)dy′.

This is a similarity solution for the distribution of l with y remains invariant. Notice that points with
constant y, and hence constant l, move outwards with time. This also implies that total angular momen-
tum within a fixed radius r decreases with time simply because it flows outward. We can also see that
the angular momentum contained between two rings with constant y1 and y2 remain unchanged. Let us
see now what happens to the mass between these two rings. It easy to see that this mass is given by

M12 =
4πC

2(2− γ)ac0
T−1/2(2−γ)

∫ y2

y1

exp(−y)dy.

We see that total mass in such a annulus of constant angular momentum decreases with time as T−1/2(2−γ).
At the same time the annulus itself travels outward so at asymptotically large times mass content within
it is negligible but it still carries the same angular momentum. Analogously it can be shown that the
total mass of the disc decreases as T−1/2(2−γ). The decrease in mass is accounted by the mass flux into
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the origin. We have seen that the radial velocity also changes sign and more and more material is swept
inwards. Thus, the real matter distribution is a growing central point mass surrounded by a density
distribution which grows in size but decreases in mass. A particular case is illustrated in Fig. 2.
As we have seen, the point of radial velocity reversal moves outwards overtaking more and more material.
Thus material that starts inside will move towards the origin whereas material that starts outside will
begin by moving outwards only to be overtaken (if it is not the extreme edge). Once overtaken it moves
inwards and ends up into the center r = 0. The trajectories of fluid elements illustrate this quite clearly.
If we follow the trajectory of a single particle we have

dh

dt
=

dh

dr
vr = −3c0h

2γ−3

4

(
1− 2(2− γ)ah2(2−γ)

T

)
,

or

2a(2− γ)
dh2(2−γ)

dT
= −

(
1− 2(2− γ)ah2(2−γ)

T

)

which integrates to give

h2(2−γ) =
T

a

(
ah

2(2−γ)
0 − lnT

2(2− γ)

)
.

This gives the paths traced out by the particles as a function of time. So, those particles that start with
positive radial velocity move first outwards and then turn around when

lnT = 2a(2− γ)h2(2−γ)
0 − 1.

In Fig.3 we show some trajectories of fluid particles describing this motion. By that we quantitatively
confirm the behaviour described only for asymptotically large times at the end of the previous subsection.
In conclusion, general secular evolution of a viscous disc proceeds as follows: most of the mass moves
inwards losing energy and angular momentum as it does so, but a tail of matter moves outwards to larger
radii in order to take up the angular momentum. For the considered case the specific angular momentum
h for matter in a circular orbit at radius r is given by h = Ωr2 ∝ r1/2 and so tends to infinity at large
radius. Thus, eventually all of the matter initially in the disc ends up at the origin and all of the angular
momentum is carried to infinite radius by negligible (zero in the limit) mass.

4 Steady disc and emitted spectrum

We have seen in previous section that changes in the radial structure in a thin disc occur on timescales
tvisc ∼ r2/ν. In many systems external conditions (e.g., mass transfer rate) change on timescales rather
longer than tvisc. In this case, a stable disc will settle to a steady-state structure, which can be studied
by setting ∂/∂t = 0 in conservation equations (1-3). From Eq. (1) we get

rΣvr = const.

Clearly, as an integral of the mass conservation equation, this represents the constant inflow of mass
through each point of the disc. Since vr < 0 we write

Ṁ = 2πrΣ(−vr), (8)

where Ṁ(gs−1) is the accretion rate. From the angular momentum equation (2) we get:

−νΣΩ′ = Σ(−vr)Ω +
C

2πr3
. (9)

The constant C is related to the rate at which angular momentum flows into the star, or equivalently,
the couple exerted by the star on the inner edge of the disc. For example, let us suppose that our disc
extends all the way down to the surface r = r∗ of the central star. In a realistic situation, the star must
rotate more slowly than break-up speed at its equator, i.e., with angular velocity

Ω∗ < ΩK(r∗).
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In this case the angular velocity of disc material remains Keplerian and thus increases inwards, until it
begins to decrease to the value Ω∗ in a ’boundary layer’ of very small radial extent, b << r0. Hence,
there exists a radius r = r∗ + b at which Ω′ = 0. Because b << r∗, Ω is very close to its Keplerian value
at the point where Ω′ = 0, i.e.,

Ω(r∗ + b) =
(

GM

r3∗

)1/2

(1 + O(b/r∗)). (10)

If b is comparable to r∗ than thin disc approximation breaks down at r = r∗ + b; this is no longer the
boundary layer, but some kind of thick disc. At r = r∗ + b, Eq.(9) becomes

C = 2πr3
∗ΣvrΩ(r∗ + b),

which using Eq. (8) implies
C = −Ṁ(GMr)1/2

to terms of order b/r∗. Substituting this into Eq. (9) and setting Ω = ΩK , we find

νΣ =
Ṁ

3π

[
1−

(r∗
r

)1/2
]

. (11)

this last formula for a steady-state disc with a slowly rotating star has an important and elegant result.
If we now use Eq. (5) from Eq. (11) we obtain

Q(r) =
3GMṀ

8πr3

(
1−

(r∗
r

)1/2
)

. (12)

Hence, the energy flux through the faces of a steady thin disc is independent of viscosity. This is an
important result: as mentioned, dissipated viscous energy Q(r) is a quantity of prime observational
significance, and Eq. (12) shows that its dependance on Ṁ, r, etc. is known, even though we are at
present fairly ignorant as to the precise physical nature of the viscosity ν. The result relies on the
implicit assumption that ν can adjust itself to give the required Ṁ . The independence of Q(r) from
ν has come about because we were able to use conservation laws to eliminate ν; clearly the other disc
properties (e.g. Σ, vr, etc.) do depend on ν.
Let us now use Eqs. (5),(12) to find the luminosity produced by the disc between radii r1 and r2. This is

L(r1, r2) = 2
∫ r2

r1

Q(r)2πrdr,

the factor 2 coming from the two sides of the disc. From Eq. (12) we get

L(r1, r2) =
3GMṀ

2

∫ r2

r1

(
1−

(r∗
r

)1/2
)

dr

r2

which can be evaluated by putting y = r∗/r, with the result

L(r1, r2) =
3GMṀ

2

[
1
r1

(
1− 2

3

(
r∗
r1

)1/2
)
− 1

r2

(
1− 2

3

(
r∗
r2

)1/2
)]

Letting r1 = r∗ and r2 →∞, we obtain the luminosity of the whole disc

Ldisc =
GMṀ

2r∗
=

1
2
Lacc

As we see the total disc luminosity is half the energy available from the accretion process, GMṀ/r∗.
The discrepancy arises because the matter just outside the boundary layer still retains one half of the
potential energy it has lost as kinetic energy. Thus, the rest of the accretion luminosity is emitted in the
boundary layer, which we do not treat here in detail (in fact, we ignore here boundary layer by working
in the approximation b = 0). Thus, the emission from the boundary layer is as important as the emission
from the disc itself.
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Figure 4: The integrated spectrum of a steady accretion disc that radiates a local blackbody spectrum
at each point. The units are arbitrary but we show frequencies corresponding to Tout, the temperature
of outermost disc radius and to T∗ the characteristic temperature of the inner disc (after Pringle 1981).
The spreading of the initial ring is clearly seen.

The emitted spectrum

As mentioned, dissipated energy goes into heat that, in turn, is converted into radiation emitted from the
disc surface. Thus, in order to find the total spectrum of radiation emitted from the disc we must first
determine the spectrum emitted locally at each point in a disc and then integrate to over the whole disc
surface. For a proper local determination of a spectrum we should solve radiative transfer equation in
the vertical direction at each radius. If the disc is optically thick in the sense that each element radiates
as a blackbody with a temperature T (r) then the problem simplifies enormously. Now the corresponding
temperature distribution is found by equating dissipation rate Q(r) per unit area to the energy flux for
blackbody:

σT 4(r) = Q(r).

Using Eq. (12) we get

T (r) =

[
3GMṀ

8πr3

(
1−

(r∗
r

)1/2
)]1/4

.

Far from the star’s surface, r >> r∗, this formula simplifies to

T (r) = T∗

(
r

r∗

)−3/4

,

where T∗ = (3GMṀ/8πσr3
∗)

1/4. Temperature T (r) here plays an analogous role to the effective temper-
ature of a star: very crudely we can approximate the spectrum emitted by each element of area of the
disc as (ν is frequency here, not to be confused with viscosity coefficient):

Iν = Bν [T (r)] =
2hν3

c2
(
ehν/kT (r) − 1

) .

The approximation of disc being optically thick involved here neglects the effect of the atmosphere of
the disc, i.e., that part of the disc material at optical depth τ ≤ 1 from infinity in redistributing the
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radiation over frequency ν. Hence, this prescription may not represent the detailed spectrum of the disc
very well in particular frequency domains, especially those where the atmospheric opacity is a rapidly
varying function of frequency. For an observer at a distance D whose line of sight makes an angle i to
the normal to the disc plane, the flux at frequency ν from the disc is

Sν =
2πcos i

D2

∫ rout

r∗
Iνrdr,

where rout is the outer radius of the disc, since a ring between radii r and r + dr subtends solid angle
2πrdrcos i/D2. With the blackbody assumption, we get

Sν =
4πh cos i ν3

c2D2

∫ rout

r∗

rdr

ehν/kT (r) − 1
. (13)

An important feature of this result is that Sν is independent of the disc viscosity. This is a consequence
of both the steady and blackbody assumptions. Since both of these are likely to be at least roughly
valid for some systems, we should expect the spectrum specified by Eq. (13) to give at least crude
representation of the observed spectrum for some systems, in the same way that stellar spectra are to a
crude approximation blackbody: any serious discrepancy cannot be due to ignorance of viscosity.
The resulting Sν spectrum is shown in Fig. 4. The shape of this spectrum is easy to deduce from
Eq. (13). First for frequencies ν << kT (rout)/h the Planck function Bν takes the Rayleigh-Jeans form
2kTν2/c2; hence Eq. (13) gives Sν ∝ ν2. For ν >> kT∗/h Planck function assumes the Wien form
2hν3c−2e−hν/kT : the integral is dominated by the hottest parts of the disc (T ∼ T∗) and the integrated
spectrum is exponential. For intermediate frequencies ν such that kT (rout)/h << ν << kT∗/h we let
x = hν/kT (r) ' (hν/kT∗)(r/r∗)3/4. Then Eq. (13) becomes approximately

Sν ∝ ν1/3

∫ ∞

0

x5/3dx

ex − 1
∝ ν1/3

since the upper limit in the integral is hν/kT (rout) >> 1 and the lower limit is hν/kT∗ << 1. Thus the
integrated spectrum Sν is a stretched out blackbody; the ’flat’ part Sν ∝ ν1/3 is sometimes considered a
characteristic disc spectrum. However, unless Tout = T (rout) is appreciably smaller than T∗ this part of
the curve may be quite short and the spectrum is not very different from a blackbody.

5 Summary

Here we described the basic effect of viscosity on the secular evolution of accretion discs. Usually this
viscosity originates from some kind of turbulence (due to gravitational, magnetorotational, purely hy-
drodynamical, convection instabilities) in a disc and cannot be ordinary molecular viscosity because the
latter is extremely small to give appropriate evolutionary time scales. We demonstrated that irrespective
of the origin of such a turbulent viscosity the main evolutionary picture remains unchanged and consists
in the following: most of the disc’s mass moves inwards losing energy and angular momentum as it does
so, but a tail of matter moves outwards to larger and larger radii in order to take up the angular mo-
mentum. We also calculated the trajectories of fluid particles clearly showing this behaviour. Based on
the steady disc model and blackbody assumption, we calculated the typical spectrum that comes from
accretion discs. Of course, this is a highly idealized case and gives only very crude approximation for the
emitted spectrum, because we it does not includes modifications due to optically thin parts of the disc.
Nevertheless, it a good starting point towards more complicated models of accretion discs.
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