UWISH2

UWISH2 – Overview and <u>Results</u>

Dirk Froebrich Georgios Ioannidis

UWISH2

UKIRT Widefield Infrared Survey

in 1-0 S(1) line of H2 at $2.122\mu m$

- 7° < I < 65° ; -1.5° < b < +1.5°
- ~180 square degrees

All observations finished (since 17.8.2011)

All data now public, GPS K-band quality

SCIENTIFIC OBJECTIVES – What we (could) do

Jets and outflows from Protostars and YSOs

Variability ('substitute' K-band epoch for GPS)

Planetary Nebulae

UWISH2

Nearby dwarfs (via proper motions)

SNRs, HII regions,

AREA SEARCHED FOR OUTFLOWS

ISH2

調

IAU (1958) galactic coordinates; gnomonic projection

Froebrich et al. (2011) Ioannidis & Froebrich (2012)

UWISH2 ~ 180 square degrees SEARCHED AREA ~ 33 square degrees

15 fold increase in number of known outflows in Groups of a few (3-5) sources, with sizes of about 5pc

Ioannidis & Froebrich (2012)

SOURCES OF OUTFLOWS

Glimpse, AKARI, K-band excess, K-band variability, literature,... half of objects have a source candidate

Flux distribution

Completeness limit 3*10⁻¹⁸Wm⁻²

DISTANCE CALCULATION (\sigma=25%)

Measure density of foreground stars Compare to Besancon Galaxy model (Robin at al. 2003) Calibration with RMS sources (Urquhart et al. 2008)

DISTANCE CALCULATION (\sigma=25%)

Completeness limit is 10^{-3} Lu at 5Kpc That is HH211 behind A_K=1mag

HH211 in our data

DISTANCE TO THE GALACTIC PLANE

Scale height 30 pc, like massive stars

Exponential relation between N and length: N \propto 10^{-0.75 | [pc]}

 $\frac{1}{4}$ of objects are parsec scale

LENGTH DISTRIBUTION MODELLING

Variables:

- Velocity (0 150 km/s)
- Age (1000 30000 yrs)
- Inclination

Best fitting models:

40 km/s – 130 km/s 4000 yrs – 20000 yrs 20 degrees – 90 degrees

Young/old and very slow objects are not common in our sample.

LUMINOSITY

 $N \propto L^{-1.9\pm0.2}$ $M \propto$

SH2

Fig.

 $M \propto M^{-1.3\pm0.2}$

MW SFR ~ 2Mu yr⁻¹

UWISH2

Luminosity vs Lengths

Brighter Outflows are Longer, environment not dominant

Time Gap between mass ejections

typically 1000yrs, ~10% fraction of jet lifetime << than FU-Ori duty cycle?

WORK IN PROGRESS

- Fraction of sources with jets/outflows duration of the jet/outflow phase in YSO evolution 21/245 in Robitaille list
- Source properties (mass, luminosity, age, accretion rates) younger, higher mass accretion rates
- How do jet properties relate to source properties?
 no L_{bol} vs L_{H2} correlation
- Simulate simultaneously length, luminosities and gaps to constrain mass ejection scenarios.

FUTURE WORK

• Cloud properties (mass, structure)

UWISH2

- Associate outflows with cloud cores what percentage of
 - clouds show active forming areas
- Is the star formation (with jets) isolated or clustered?
- How is YSO variability (outbursts) linked to jets/outflows?

FUTURE WORK

EXTEND THIS WORK TO

THE ENTIRE UWISH2 SURVEY

and UWIFE?