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Cosmic Magnification

7 QSO Magnification Bias and Large-Scale Structure

7.1 Introduction

Magnification by gravitational lenses is a purely geometrical phenomenon. The
solid angle spanned by the source is enlarged, or equivalently, gravitational focus-
ing directs a larger fraction of the energy radiated by the source to the observer.
Sources that would have been too faint without magnification can therefore be seen
in a flux-limited sample. However, these sources are now distributed over a larger
patch of the sky because the solid angle is stretched by the lens, so that the number
density of the sources on the sky is reduced. The net effect on the number density
depends on howmany sources are added to the sample because they appear brighter.
If the number density of sources increases steeply with decreasing flux, many more
sources appear due to a given magnification, and the simultaneous dilution can be
compensated or outweighed.

This magnification bias was described in Sect. 4.4.1 (page 70) and quantified in
eq. (4.38). As introduced there, let µ(!!) denote the magnification into direction!!
on the sky, and n0(> S) the intrinsic counts of sources with observed flux exceed-
ing S. In the limit of weak lensing, µ(!!) ! 1, and the flux will not change by a
large factor, so that it is sufficient to know the behaviour of n0(> S) in a small
neighbourhood of S. Without loss of generality, we can assume the number-count
function to be a power law in that neighbourhood, n0(> S) " S−#. We can safely
ignore any redshift dependence of the intrinsic source counts here because we aim
at lensing effects of moderate-redshift mass distributions on high-redshift sources.
Equation (4.43, page 71) then applies, which relates the cumulative source counts
n(> S,!!) observed in direction!! to the intrinsic source counts,

n(> S,!!) = µ#−1(!!)n0(> S) . (7.1)

Hence, if #> 1, the observed number density of objects is increased by lensing, and
reduced if #< 1. This effect is called magnification bias or magnification anti-bias
(e.g. Schneider et al. 1992).

The intrinsic number-count function of QSOs is well fit by a broken power law with
a slope of # ∼ 0.64 for QSOs fainter than ∼ 19th blue magnitude, and a steeper
slope of #∼ 2.52 for brighter QSOs (Boyle et al. 1988; Hartwick & Schade 1990;
Pei 1995). Faint QSOs are therefore anti-biased by lensing, and bright QSOs are
biased. In the neighbourhood of gravitational lenses, the number density of bright
QSOs is thus expected to be higher than average, in other words, more bright QSOs
should be observed close to foreground lenses than expected without lensing. Ac-
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assumption is not very realistic. Indeed, the strong clustering of galaxy redshifts
means that the effective !X will be considerably larger than the analytical estimate
used above. In any case, redshift information on the source galaxies will substan-
tially improve the accuracy of weak lensing results.

4.4 Magnification Effects

In addition to the distortion of image shapes, by which the (reduced) shear can be
measured locally, gravitational light deflection also magnifies the images, leaving
the surface brightness invariant. The magnification changes the size, and therefore
the flux, of individual galaxy images. Moreover, for a fixed set of sources, the num-
ber density of images decreases by a factor µ as the sky is locally stretched. Com-
bining the latter effect with the flux magnification, the lensed and unlensed source
counts are changed according to (4.26). Two strategies to measure the magnifica-
tion effect have been suggested in the literature, namely either through the change
in the local source counts, perhaps combined with the associated change (4.27) in
the redshift distribution (Broadhurst et al. 1995), or through the change of image
sizes at fixed surface brightness (Bartelmann & Narayan 1995).

4.4.1 Number Density Effect

Let n0(> S,z)dz be the unlensed number density of galaxies with redshift within
dz of z and with flux larger than S. Then, at an angular position!" where the magni-
fication is µ(!",z), the number counts are changed according to (4.26),

n(> S,z) =
1

µ(!",z)
n0

(

>
S

µ(!",z)
,z

)

. (4.38)

Accordingly, magnification can either increase or decrease the local number counts,
depending on the shape of the unlensed number-count function. This change of
number counts is called magnification bias, and is a very important effect for grav-
itational lensing of QSOs (see Schneider et al. 1992 for references). 7

Magnification allows the observation of fainter sources. Since the flux from the
sources is correlated with their redshift, the redshift distribution is changed accord-

7 Bright QSOs have a very steep number-count function, and so the flux enhancement
of the sources outweighs the number reduction due to the stretching of the sky by a large
margin. Whereas the lensing probability even for a high-redshift QSO is probably too small
to affect the overall sources counts significantly, the fraction of multiply-imaged QSOs in
flux-limited samples is increased through the magnification bias by a substantial factor over
the probability that any individual QSO is multiply imaged (see, e.g. Turner et al. 1984;
Narayan & Wallington 1993 and references therein).
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In this section, detail, as far as you are currently able, your research plan for the second

and third years of your PhD, drawing from the key references [?] that you have highlighted

in your review section. Here, try and illustrate your proposal, as in Figure 1 which is

taken from the same paper as the illustration references.

Figure 1: Here is the optical system from the same paper as the reference drawn in xfig
and include to shown how such a figure in included.

At this stage it is not expected that this will be a fully-developed research proposal, but

is your chance to show what you have extracted from the literature and how you see your

own work will fit in. This section is not expected to exceed 2 pages.
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5 Summary

As short section highlighting the key aspect of your proposal. At this stage this may be

a bit uncertain and will be subject to charge as the work progresses.
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Credit: Hildebrandt et. al 2009; CARS: The CFHTLS-Archive-Research Survey III. First detection of cosmic magnification in 
samples of normal high-z galaxies

H. Hildebrandt et al.: Cosmic magnification with LBGs 7

Fig. 4. Cross-correlation functions between the dropouts at different redshifts and with different magnitudes and the
different foreground galaxy samples. The red, green, and blue lines correspond to the predictions based on the LF slopes of
Sawicki & Thompson (2006), Steidel et al. (1999), and Bouwens et al. (2007), respectively. For some background samples
the predictions by Sawicki & Thompson (2006) and Steidel et al. (1999) are virtually identical so that the red and green
curve lie on top of each other.

mostly consistent with zero in all magnitude bins and for
all LBG redshifts. The optimally-weighted cross-correlation
functions are all consistent with zero as well.

Furthermore, we checked the influence of the choice of
the foreground sample. We included galaxies with photo-z
estimates in regions where we would expect some contami-
nation of the LBG samples. For example, including galax-
ies with zphot < 0.5 into the foreground sample that is
cross-correlated to the g-dropouts leads to a boost in the
amplitudes. In particular, the anti-correlations, which were

observed before when excluding this low-z range, vanish.
The signal turns positive for the faintest g-dropouts. This is
in clear contradiction to the predicted lensing signal which
should be negative because of the shallow slope of the LF at
the faint end. Similarly, the negative signal for the faintest
r-dropouts turns positive if galaxies with 0.5 < zphot < 1.0
are included in the foreground sample. These excess signals
can be explained by redshift overlap leading to physical
cross-correlations between the small number of contami-
nants of the LBG samples and the foreground galaxies.

H. Hildebrandt et al.: Cosmic magnification with LBGs 5

Fig. 3. Adopted values of α − 1 as a function of LBG magnitude for the four background samples. The dotted, dashed,
and dash-dotted lines correspond to the slopes of the LFs of Sawicki & Thompson (2006), Bouwens et al. (2007), and
Steidel et al. (1999), respectively, while the solid line corresponds to the slope of the polynomial fitted to the number
counts of Fig. 2.

cross-correlation function we create one large random cata-
logue, called R in the following, with the same areal geom-
etry as the data catalogues and containing NR objects. We
measure the angular cross-correlation function with a mod-
ified version of the estimator proposed by Landy & Szalay
(1993):

w(θ) =
D1D2 − D1R − D2R

RR
+ 1 , (11)

with D1D2 being the number of low-z-high-z galaxy pairs in
the angular range [θ, θ+δθ] normalised by ND1

ND2
, DiR be-

ing the number of pairs between catalogue Di and the ran-
dom catalogue in that angular range normalised by NDi

NR,
and RR being the number of pairs in the random cata-
logue in that angular range normalised by N2

R. By choos-
ing NR " NDi

(by at least a factor of ten compared to
the largest foreground samples) the shot noise introduced
by the random catalogue can be suppressed. We use 106

random points for each field that reduce to ∼ 7 × 105 af-
ter masking. The masks used for the masking of the data
catalogues are identical to the ones used for masking the
random catalogues. Halos of bright stars are masked out as
well as low-S/N regions (e.g. the borders of the stack that
have lower S/N due to dithering) and regions affected by
diffraction spikes or asteroid tracks. For a detailed overview
of the masking routines we refer the reader to Erben et al.
(2009). This conservative masking approach results in a loss
of ∼ 30% of the area but ensures a highly uniform dataset
with a homogeneous detection and selection efficiency.

Ménard et al. (2003) showed that the signal-to-noise
of cosmic magnification measurements can be optimally
boosted if an appropriate weight of α − 1 is put on each
background galaxy. In this way the sources are weighed ac-
cording to the expectations from the LF. Bright LBGs that
are expected to be positively cross-correlated to the low-z
lenses because of the steep exponential part of the LF get
a positive weight. Faint LBGs from the shallow part of the
LF that are expected to be anti-correlated get a negative
weight. And intermediately bright LBGs from parts of the
LF where α − 1 ≈ 0 are down-weighed. We modify the
estimator in the following way:

ww(θ) =
Dw

1 D2 − Dw
1 R − 〈w〉D2R + 〈w〉RR

RR
, (12)

with Dw
1 D2 and Dw

1 R being weighted pair counts, i.e. re-
flecting the average of the weights of the LBGs in the se-

lected pairs rather than the pure normalised number of
pairs, and 〈w〉 being the average weight of the LBGs in
the whole D1 catalogue.

We estimate the cross-correlation function separately
for each of the four independent fields and calculate the
mean w̄(θ). Furthermore, we draw ten jack-knife samples
from the catalogue of each field and estimate the correlation
function for all 40 of these. In order to take the correlation
of the errors of data points at different angular scales prop-
erly into account, the covariance matrix is then estimated
in the following way from these jack-knife samples:

C(θ1, θ2) =
(

N

N − 1

)2

×
∑

i

[wi(θ1) − w̄(θ1)) × (wi(θ2) − w̄(θ2)] .

(13)

4. Results

4.1. Cross-correlations in different magnitude bins

First we cross-correlate LBGs in different magnitude bins
to appropriate (i.e. non-overlapping) low-z samples to see
if the signal agrees with the predictions.

For the u-dropouts we choose the low-z range 0.1 <
zphot < 1.0, for the g-dropouts we choose 0.5 < zphot < 1.4,
and for the r-dropouts we choose all galaxies with either
0.1 < zphot < 0.5 or 1.0 < zphot < 1.4 (essentially a dou-
ble peaked distribution). These choices are motivated by
the simulated LBG redshift distributions shown in Fig. 1.
We exclude the low-redshift ranges that potentially con-
taminate the LBG samples. Redshift beyond z = 1.4 are
not considered for the lenses because between z = 1.4 and
z = 2.5 we cannot expect our photo-z’s to perform very well
due to the lack of infrared filters. Furthermore, we restrict
ourselves to magnitudes of i < 24 for the foreground sam-
ple since without a deeper spectroscopic survey we cannot
safely predict how the rate of catastrophic photo-z outliers
develops for fainter galaxies. We apply an ODDS cut of
ODDS > 0.8 as a compromise between accuracy and den-
sity of the lens samples.

In Fig. 4 the cross-correlation functions between the
different source samples in different magnitude bins and
the lens samples are shown. Errors are estimated from
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Theory

✤ Three separate contributions to observed number density of galaxies 
on sky

∝ κ(Ωm, δm, r) (1)

= b(k, r)δm

1

∝ κ(Ωm, δm, r) (1)

= b(k, r)δm

1

✤ Dependence on matter density and distribution, independent of type of matter.

✤ Dependence on evolution history of Universe - handle on Dark Energy.

✤ Leads to four terms in the number (over)density power spectrum:
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1 Background

Outline the background of your subject area including the key initial References [?] and
reference textbooks [?]. Also include some of the more readable articles in popular science
journals [?], and, where appropriate, standard textbooks [?].

The exact length of this section will depend on your subject area, but will generally not
exceed a page and will be aimed at the general scientific reader.

2 Review of Background Bibliography

In this section detail the main supporting references and articles [?] for your intended
area of research and, most importantly, your critical evaluation of their relevance. Also
where your subject draws from multiple disciplines, do not forget to include key reference
from each discipline, even if they are relatively old [?].

This is the main part of your review and is the part that will be of use to you when
preparing for your thesis. Here try and identify as many of the key references as possible,
and enter then into a BibTeX file that you will use later. Remember that recording the
page number, titles and details of these key articles now will save you hours of searching
through Web-of-Science the day before your submit your thesis!

This part should be written in standard scientific language, aimed at the experts in the
field. This is the main part of your first year report, and is expected to be 10 pages in
length.

3 Progress to Date

In this section you should detail your progress to date. The length of this section will
depend on the type of research project you are undertaking.
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Measuring Magnification 

Credit: Joachimi, J., Bridle, S., “Simultaneous measurement of cosmology and intrinsic 
alignments using joint cosmic shear and galaxy number density correlations.”

A&A 523, A1 (2010)

Fig. 1. Fiducial power spectra for all considered correlations. The upper right panels depict the contributions to εε (in black) and nn (in magenta)
correlations. The lower left panels show the contributions to correlations between number density fluctuations and ellipticity. Since we only show
correlations C(i j)

αβ ($) with i ≤ j, we make in this plot a distinction between nε (in red; number density contribution in the foreground, e.g. gG) and εn
(in blue; number density contribution in the background, e.g. Gg) correlations. In each sub-panel a different tomographic redshift bin correlation
is shown. For clarity only odd bins are displayed. In the upper right panels the usual cosmic shear signal (GG) is shown as a black solid lines; the
intrinsic alignment GI term is shown by the black dashed lines; the intrinsic alignment II term is shown by the dotted black line; the usual galaxy
clustering signal (gg) is shown by the magenta solid line; the cross correlation between galaxy clustering and lensing magnification (gm) is shown
by the magenta dashed line; the lensing magnification correlation functions (mm) are shown by the magenta dotted line. In the lower left panels
the solid blue line shows the correlation between lensing shear and galaxy clustering (Gg); the blue dashed line shows the correlation between
lensing shear and lensing magnification (gm); the blue dot-dashed line shows the correlation between intrinsic alignment and galaxy clustering
(Ig or equivalently gI); the red solid line shows the correlation between galaxy clustering and lensing shear (gG), which is equivalent to the blue
solid line with redshift bin indices i and j reversed; similarly the red dashed line shows the correlation between lensing magnification and lensing
shear (mG), for cases where the magnification occurs at lower redshift than the shear (i < j); finally the dotted line shows the correlation between
lensing magnification and intrinsic alignment (mI).
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B. Joachimi and S. L. Bridle: Simultaneous measurement of cosmic shear and galaxy number density correlations

Fig. 3. 1σ-contours for all pairs of cosmological parameters considered, marginalised over all other parameters. We have used a photometric
redshift uncertainty parameter value σph = 0.05, ten photometric redshift bins for tomography Nzbin = 10, and the most flexible intrinsic alignment
and bias model considered in this paper, with over two hundred free parameters (NK = 7, and NZ = 7). Orange (light hatched) confidence
regions result from using galaxy number density correlations (nn) (excluding the non-linear regime) only, red (dark hatched) regions use ellipticity
correlations (εε) alone, and blue (filled) regions correspond to using all available information including density-ellipticity cross-correlations. For
reference, the contours obtained from a pure lensing signal are shown as black lines. Flat priors on cosmological parameters have been applied.

maximum number of photo-z bins we have considered, although
the bins feature an increasing overlap of their corresponding
redshift distributions as we keep σph = 0.05 fixed. As one
would expect, we obtain an intermediate scaling with Nzbin for
the complete set of available correlations. Our fiducial choice of
Nzbin = 10 is beyond the regime of strongly varying figures of
merit at small Nzbin, but the further increase in FoM is more pro-
nounced than for a pure lensing signal or εε correlations only
with FoMDETF rising by an additional 80% on increasing the
number of photometric redshift bins from 10 to 20.

Figure 5 shows the figures of merit as a function of the
photo-z dispersion, normalised to the value at σph = 0.02. Since
the FoMTOT is a logarithmic quantity, we compute differences

rather than ratios of the figure of merit, i.e.

rFoM = FoMDETF(σph)/FoMDETF(σph = 0.02) (46)
dFoM = FoMTOT(σph = 0.02) − FoMTOT(σph) (47)

= ln




[
det
(
F−1
)
cosm.

]
(σph)

[
det
(
F−1)

cosm.
]

(σph = 0.02)


 ·

Hence the difference dFoM is directly related to the change in
volume of the error ellipsoid spanned by the set of cosmological
parameters. We have returned to our default value of Nzbin = 10.

The pure lensing signal needs merely coarse redshift in-
formation to attain its full statistical power, and hence its
FoM hardly suffers from the increasing spread in the redshift
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6 Van Waerbeke

magnification taken alone. One should also note that degeneracy-
breaking in the Ωm-σ8 parameter space for the combined shear-
magnification arises because of the pre-factor Ωm in Eq. 8, while
the shear scales as Ω2

m. In a companion paper (Hildebrandt et al.
(2009a)), we presents the first measurement of cosmic magnifica-
tion on galaxies. The source galaxies are Lyman-break Galaxies
(LBG), selected at high redshift using the dropout technique as de-
scribed in Hildebrandt et al. (2009b). This technique provides a ro-
bust way of separating background and foreground galaxies. The
signal was measured for a wide range of slopes α which confirms
the cosmological origin of the signal, similar to Scranton et al.
(2005).

The main limitation for the use of cosmic magnification as a
cosmology probe is the explicit dependence on the galaxy biasing,
which in general cannot be assume to be b = 1 or even constant
with scale. There is however a remarkable complementarity with
cosmic shear which can be exploited in order to measure the cos-
mological parameters. The auto-correlation function of the fore-
ground population is indeed given by

ξN(θ) = 2b2

∫

dw
p2

f (w)

f2
K(w)

∫

sds P3D

(

s
fK(w)

; w

)

J0(θs), (27)

and when combined with Eqs. 8 it provides an independent mea-
surement of the usual shear two-points correlation function (Eq.
26) proportional to ∝ σ2

8Ω
2
m, which does not depend on galaxy

biasing. The new estimator can be written as:

ξµ(θ) =
w2

12(θ)

ξN(θ)
. (28)

Such measurement uses photometry data only and does not rely on
any shape measurement. The approach is similar to Van Waerbeke
(1998) who showed that the combination of the shear with number
counts provide constraints on the galaxy biasing and cosmology. In
that paper it was shown that the equivalent of Eq. 8 was the cross-
correlation between the shear of distant galaxies and the number
counts of the foreground galaxies:

〈MapNap〉 = 3πb Ωm

∫

sds
2π

∫

dw
g(w)
a(w)

p1(w)
fK(w)

×

P3D

(

s
fK(w)

; w

)

I2(θs), (29)

where I(θs) is the Fourier transform of the aperture filter. The first
practical implementation combining shear and number counts was
very promising (Hoekstra et al. (2002)).

The advantage of Eq. 8 over Eq. 29 lies in the fact that the
cosmic magnification is completely independent of residual sys-
tematics inherent to shear measurement. It shows that the com-
bined use of cosmic shear, magnification and number count statis-
tics could be optimized in order to measure the cosmological pa-
rameters and simultaneously identify and reduce the systematics.
Among the systematics which affect the shear and not the mag-
nification one can mention the shear calibration and additive bias,
and the intrinsic alignment which couples galaxy orientation over
a large redshift range (Hirata & Seljak (2004)). High order shear
statistics are particularly sensitive to intrinsic alignment which
could eventually completely dominate the signal in some situations
(Semboloni et al. (2008)).

Another nice feature of cosmic magnification is the possibil-
ity for exploiting faint distant galaxies for weak lensing, galaxies
for which the shape cannot be measured, and therefore would not
be used otherwise. This is the case for instance for LBGs which

Figure 5. Cosmological parameters constraints from shear and magnifica-
tion for a 1500 sq.deg. survey. Top panel: the magnification is measured
on the z = [0.7, 1.0] and m = [23.5, 24.5] with the foreground galaxies
located at z = [0.1, 0.6]; the shear is measured on the z = [0.7, 1.0] and
m = [21.5, 24.5] galaxies. Bottom panel: the magnification is measured
on the z = [1.1, 1.4] and m = [21.5, 22.5]; the shear is measured on the
z = [1.1, 1.4] and m = [21.5, 24.5] galaxies. The filled contour shows
the error contour obtains from a 750 sq. deg. shear analysis combined with
a 750 sq.deg. magnification analysis.

can be identified at very large redshift using the dropout technique
in optical bands. Hildebrandt et al. (2009a) have successfully mea-
sured the magnification on redshift z = 3, 4, 5LBGs. This provides
a very interesting observational window for future deep large sur-
veys such as LSST and JDEM. With cosmmic shear measurement
alone, a large fraction of the detected objects in those surveys would
not be used for weak lensing studies. The combination of shear and
magnification enables the possibility to use all detected objects (in-
cluding the faint and/or high redshift galaxies and quasars) to probe
dark matter from weak lensing.

Like cosmic shear, the cosmic magnification can be measured
at various source redshifts, for various lens redshift, and for dif-
ferent magnitude bins. A study which would combine shear and
magnification with a tomographic approach is left for a forthcom-
ing study.

With b = 1.
Blue - Magnification

Green  - Shear
Filled - Joint shear and Mag
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Measuring Magnification 

✤ Cosmic shear suffers from measurement systematics, PSF and 
Intrinsic Alignments.

✤ With magnification we must be careful about:

✤ Contamination from the gg term dominating the magnification 
signal.

✤ Photo-z errors, including catastrophic photo-z’s.

✤ Spatial variation of the slope of the number counts.

✤ Errors in magnitude determination.
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Outstanding Work

✤ Gain a better understanding of systematics inherent in magnification 
analysis.

✤ Test impact of photometric redshift errors, and the limitations they 
impose on magnification.

✤ Investigate the level of S/N of magnification. Is it competitive to other 
independent probes of cosmology, such as cosmic shear?

✤ Detail potential gains in using magnification, either as independent 
probe or as a complementary technique.
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