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Figure 2. Slice through the SDSS main galaxy sample, with galaxies color-

coded based on rest-fr
ame g − r color. The slice shows galaxies within ±4 deg

of the celestial equator, in the north Galactic cap. The redshift limit is smaller

than in Figure 1 to better reveal details of structure. The large structure cutting

across the center of the map is the “Sloan Great Wall” (Gott et al. 2005) discussed

in Section 3.2.

subsamples include fewer galaxies than the full flux-lim
ited

sample, they are much easier to interpret. For a given luminosity

bin, we discard the galaxies that are too faint to be included at the

far redshift limit or too bright to be included at the near limit. We

include galaxies with 14.5
< r < 17.6, with the conservative

bright limit imposed to avoid small incompletenesses associated

with galaxy deblending (the NYU-VAGC saf
e samples). We

further cut these samples by color, using the K-corrected g − r

color as a separator into different populations. We also study

a set of luminosity-threshold samples, namely, volume-lim
ited

samples of all galaxies brighter than a given threshold, as these

yield higher precision measurements than luminosity-bin sam-

ples and are somewhat more straightforward for HOD modeling.

For these samples we relax the bright flux limit to r > 10.0, in

order to be able to define a viable volume-lim
ited redshift range

(the NYU-VAGC bri
ght

samples). The distri
bution in magni-

tude and redshift and the cuts used to define the samples are

shown in Figure 4. Details of the samples are given in Tables 1

and 2. For luminosity-threshold samples, one could improve

statistic
s by using the flux-lim

ited galaxy catalog and weight-

ing galaxy pairs by the inverse
volume over which they can

be observed, as done by Li & White (2009, 2010) for samples

weighted by stellar mass and luminosity. This procedure would

extend the outer redshift limit for the more luminous galaxies

above the threshold, thus reducing sample variance, but it has

the arguable disadvantage of using different measurement vol-

umes for different subsets of galaxies within the sample, and we

have not implemented it here.

The full spectroscopic survey of the SDSS DR7 Legacy

survey contains 900,000 unique, survey-quality
galaxy spectra

over 8000 deg2 . Of these objects, the main galaxy sample target

criteria selected 700,000. SDSS targeted the remainder as LRG

candidates (around 100,000) or in other categories (e.g., as

quasar candidates or in special programs on the Equator). We

use a reduced footprint of 7700 deg2 , which excludes areas

of suspect photometric
calibration (Padmanabhan et al. 2008)

and incomplete regions near bright stars. This reduction leaves

670,000 main sample galaxies. Because we are using an updated

photometric
reduction, a substantial fraction of targets are

Figure 3. Same as Figure 2, but with
galaxies color-coded by absolute

magnitude. The size of the dots is also proportional to galaxy luminosity. As

expected for a flux-lim
ited survey, more luminous galaxies dominate at larger

redshifts.

assig
ned fluxes fainter than the original flux limit, which further

reduces the sample to about 640,000 galaxies. For uniformity

we have imposed an even stric
ter faint limit of r = 17.6

in

this paper, which yields 540,000 galaxies. About 30,000 of the

original targets at that flux limit were not assig
ned fibers because

of fiber collisio
ns; we assig

n these objects the redshift of their

nearest neighbor as discussed above. The resulting sample of

570,000 galaxies constitu
tes the parent sample for all of the

volume-lim
ited samples in this paper. When we apply a bright

magnitude cut of r = 14.5, it eliminates about 6000 galaxies.

Further details and the samples themselves are available as part

of the public NYU-VAGC data sets.

2.2. Clustering Measures

The autocorrelation function is a powerful way to charac-

terize galaxy clustering, measuring the excess probability
over

random of finding pairs of galaxies as a function of separation

(e.g., Peebles 1980). To separate effects of redshift distortions

from spatial correlations, it is customary to estim
ate the galaxy

correlation function on a two-dimensional grid of pair separa-

tions parallel (π ) and perpendicular (rp) to the line of sight.

Following the notation of Fisher et al. (1994), for a pair of

galaxies with redshift positio
ns v1

and v2, we define the red-

shift separation vector s ≡ v1 − v2 and the line-of-sig
ht vector

l ≡
1

2
(v1 + v2).

The parallel and perpendicular separations are

then π ≡ |s · l|/|l|
,

rp
2 ≡ s · s − π

2 .

(1)

To estim
ate the pair counts expected for unclustered objects

while accounting for the complex survey geometry, we generate

volume-lim
ited random catalogs with

the detailed angular

selection function of the samples. For the different galaxy

samples, we use random catalogs with 25–300 times as many

galaxies, depending on the varying number density
and size of

the samples. We have verified that increasing the number of

random galaxies or replacing the random catalog with another

one makes a negligible difference to the measurements. We

estim
ate ξ (rp,

π ) using the Landy & Szalay (1993) estim
ator

ξ (rp,
π ) =

DD − 2DR + RR

RR

,

(2)
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Figure2.SlicethroughtheSDSSmaingalaxysample,withgalaxiescolor-

codedbasedonrest-fr
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in
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.
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Toestim
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whileaccountingforthecomplexsurveygeometry,wegenerate

volume-lim
itedrandomcatalogswith
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Baryonic Acoustic Oscillations 

(SDSS, e.g. Percival et al. 2010) 
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Figure 8. Points with errors show our measurement of P̂halo(k). We show
√

Cii as error bars; recall that the points are positively correlated. We plot the
best-fitting WMAP5+LRG !CDM model ("m, "b, "!, ns, σ 8, h) = (0.291, 0.0474, 0.709, 0.960, 0.820, 0.690) with best-fitting nuisance parameters a1 =
0.172 and a2 = −0.198 (solid curve), for which χ2 = 40.0; the dashed line shows the same model but with a1 = a2 = 0, for which χ2 = 43.3. The BAO inset
shows the same data and model divided by a spline fit to the smooth component, P smooth, as in fig. 4 of P10. In Section 5.1, we find that the significance of the
BAO detection in the P̂halo(k) measurement is %χ2 = 8.9.

In more extended models than we have thus far considered, we
may expect the additional shape information to allow tighter con-
straints. The cosmological parameters most closely constrained by
the broad P(k) shape are those which affect the shape directly
or which affect parameters degenerate with the shape: these are
expected to be the power spectrum spectral slope ns, its running
dns/d ln k, neutrino mass mν and the number of relativistic species
Neff . Thus far in our analysis, we have assumed dns/d ln k = 0,
mν = 0 and N eff = 3.04.

One intuitively expects the measurement of P̂halo(k) to improve
constraints on the primordial power spectrum. In a !CDM model
where both running of the spectral index and tensors are allowed,
WMAP5 still places relatively tight constraints on the primordial
power spectrum: ns = 1.087+0.072

−0.073 and d ln ns/d ln k = −0.05 ± 0.03.
The measurement reported in this paper probes at most %ln k ∼ 2
and covers a range corresponding to ' ∼ 300–3000; this range
overlaps CMB measurements but extends to smaller scales. Over
this k-range and for this model, WMAP5 constrains the P(k) shape
to vary by ∼8 per cent from variations in the primordial power
spectrum. Due to the uncertainties in the relation between the galaxy
and underlying matter density fields, our nuisance parameters alone
allow P halo(k, p) to vary by up to 10–14 per cent over this region.

Therefore, we do not expect significant gains on ns or d ln ns/d ln k

from our measurement.
The effect of massive neutrinos in the CMB power spectrum is

to increase the height of the high ' acoustic peaks: free streaming
neutrinos smooth out perturbations, thus boosting acoustic oscilla-
tions. In the matter power spectrum instead, neutrino free streaming
gives a scale-dependent suppression of power on the scales that
large-scale structure measurements currently probe (Lesgourgues
& Pastor 2006). This makes these two observables highly comple-
mentary in constraining neutrino masses with cosmology.

We start by comparing the constraints from WMAP5+P̂halo(k)
and WMAP5+BAO (using the P10 BAO likelihood) in the !CDM
model with three degenerate massive neutrino species. In particular,
we vary the !CDM parameters (as in Table 3) and

∑
mν . While

WMAP5 alone finds
∑

mν < 1.3 eV with 95 per cent confidence,
WMAP5+P̂halo(k) yields

∑
mν < 0.62 eV, which is a significant

improvement over
∑

mν < 0.78 eV (WMAP5+BAO). The upper
panel of Fig. 11 compares the likelihood for mν for WMAP5 data
alone (dashed) and in combination with P̂halo(k).

A change in the number of relativistic species in the early uni-
verse changes the epoch of matter-radiation equality and thus shifts
the CMB acoustic peaks. The CMB constrains the redshift of

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 404, 60–85

Amanullah et al. 2010 (Union supernovae) (Amanullah et al. 2010) 

!   BAO very useful to constrain the expansion history and dark energy EoS  

!   but ... not sufficient to lift the degeneracy between dark energy and modified 
gravity models 
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Z=2 

Z=0 

The growth rate of structure 
depends on gravity theory 

(Credit: V. Springel) 
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Redshift-space distortions 
!   Measured correlation functions from z-

surveys are distorted due to galaxy 
peculiar motions 

!   The linear component of these 
distortions maps the motions due to 
the growth rate of structure 

Elongation on small scales: 

 « Finger-of-God » effect 

Flattening on large scales:  

« Kaiser » effect 
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Figure 4. Redshift distortion parameter β reconstructed from (a) the monopole-to-real-space ratio of the power spectra, (b) the monopole-to-real-space ratio of
the correlation functions, (c) the quadrupole-to-monopole ratio of the power spectrum, and (d) the quadrupole-to-monopole ratio of the correlation functions. The
horizontal lines represent the prediction from linear theory for each measurement with the same color and line type, where the best-fit parameter for the biasing is used
for the prediction. Error bars are the standard error of the mean. The diamonds and the open circles have been offset in the horizontally positive direction for clarity,
while the open squares and the triangles in the horizontally negative direction.
(A color version of this figure is available in the online journal.)

P (2/0)(k) ≡ P2(k)
P0(k)

=
4
3β + 4

7β2

1 + 2
3β + 1

5β2
. (6)

The last equality in the two equations holds only on large scales
where linear theory can be applied.

3.2. Configuration Space

The redshift-space correlation functions can be expressed
similarly to the power spectra under the plane-parallel approxi-
mation as

ξ (s)(rp, rπ ) = ξ0(r)L0(µ) + ξ2(r)L2(µ) + ξ4(r)L4(µ), (7)

where rp and rπ are the separations perpendicular and parallel
to the line of sight and µ is the cosine of the angle between
the separation vector and the line of sight µ = cos θ = rπ/r .
The multipoles of the redshift-space correlation function are
expressed as

ξl(r) = 2l + 1
2

∫ +1

−1
ξ (s)(rp, rπ )Ll(µ)dµ. (8)

In linear theory, the ratio of the monopole to the real-space
correlation function and the quadrupole-to-monopole ratio are
related to the redshift distortion parameter β on large scales
(Hamilton 1992):

ξ (0/r)(r) ≡ ξ0(r)
ξ (r)(r)

= 1 +
2
3
β +

1
5
β2, (9)

ξ (2/0)(r) ≡ ξ2(r)

ξ0(r) − ξ̄0(r)
=

4
3β + 4

7β2

1 + 2
3β + 1

5β2
, (10)

where ξ̄0(r) = (3/r3)
∫ r

0 ξ0(r ′)r ′2dr ′. When one wants to con-
strain the pairwise velocity dispersion (PVD) of galaxies which
becomes dominant on small scales, the real-space correlation
function is convolved with the distribution function of pair-
wise velocities to give the redshift-space correlation function
(Peebles 1980), which is not the purpose of this paper (see, e.g.,
Peacock et al. 2001; Zehavi et al. 2002; Hawkins et al. 2003; Jing
& Börner 2004; Guzzo et al. 2008; Cabré & Gaztañaga 2009).
We will briefly discuss the effect of the pairwise velocities on β
reconstruction in Section 4.2.

4. RESULTS AND DISCUSSION

4.1. β Reconstruction

In Figure 4, we show the resulting β values of dark matter
halos, LRGs, and dark matter reconstructed by the methods
described in Section 3. In each panel, the horizontal lines
show the large-scale values predicted by general relativity,
β = Ω0.55

m (z)/b (Linder 2005). For the bias parameters in
Fourier and configuration space, we use the best-fit values
obtained in Figure 3. The β value of dark matter is simply equal
to the growth rate f because b = 1. We can see the agreement
of the β values obtained from the L600 and L1200 samples
with the same halo mass, thus the different number of particles,
indicating that the resolution of a halo with 12 particles is
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FIG. 10: Expected two-dimensional contours on marginalized errors around the best-fit values of DA/DA,fid vs H/Hfid (bottom
left), f vs H/Hfid (bottom right) and DA/DA,fid vs f (top left) at z = 1, obtained from the full shape of redshift-space power
spectrum. The maximum wavenumber for parameter estimation is chosen as kmax = 0.12 (left) and 0.2hMpc−1 (right), so as
to satisfy the condition kmax < k1% for standard PT and improved PT, respectively. In each panel, open and shaded contours
indicate the two dimensional errors for the surveys with Vs = 4 and 20h−3Gpc3.

VI. DISCUSSION AND CONCLUSION

In this paper, we have investigated the power spec-
trum in redshift space, and presented a new model of red-
shift distortion, which is particularly suited for modeling
anisotropic BAOs around k = 0 ∼ 0.3 hMpc−1. Contrary
to the previous phenomenological modes in which the ef-
fects of Kaiser and Finger-of-God are separately treated
in a multiplicative way, the new model includes the cor-
rections coming from the non-linear coupling between ve-
locity and density fields, which give rise to a slight up-
lift in the amplitude of monopole and quadrupole power
spectra. The model predictions can give a good agree-
ment with results of N-body simulations, and a percent
level precision is almost achieved.

Based on the new model of redshift distortion, we pro-
ceeded to the parameter estimation analysis, and checked
if the theoretical prediction correctly recovers the cosmo-
logical information from the monopole and quadrupole
spectra of N-body simulations. MCMC analysis revealed
that while the new model of redshift distortion combin-
ing the improved PT calculation faithfully reproduces the
fiducial parameters DA, H and f and the precision can
reach at a percent level, the model neglecting the correc-
tions (A and B terms) exhibits a slight offset of the best-
fit values. In order to estimate the potential impact on
the future measurement, we have further made the Fisher
matrix analysis using the full shape of power spectrum
P (S)(k, µ), and found that the existing phenomenological
models of redshift distortion neglecting the corrections

produce a systematic error on measurements of the angu-
lar diameter distance and Hubble parameter by 1 ∼ 2%,
and the growth rate parameter by ∼ 5%. This would
become non-negligible for stage-III and -IV class surveys
defined by the Dark Energy Task Force. Correctly mod-
eling redshift distortion is thus crucial, and the new pre-
scription of redshift-space power spectrum presented here
plays an essential role in constraining the dark energy
and/or modified gravity from anisotropic BAOs.

Finally, we note several remaining tasks in practical ap-
plication to the precision measurement of BAOs. One is
the improved treatment for calculation of the corrections,
A and B terms, which needs to evaluate the bispectrum
of density and velocity fields. In doing this, a system-
atic treatment using multi-point propagator developed
by Ref. [57] would be useful and indispensable. Also, the
effects of the new contributions to the redshift-space clus-
tering in the presence of the primordial non-Gaussianity
and the dark sector interaction would be presumably im-
portant (e.g., [10, 58, 59]), and should deserve further
investigation. Of course, the biggest issue is the galaxy
biasing. Recent numerical and analytical studies claim
that the scale-dependent and stochastic properties of the
galaxy bias can change the redshift-space power spec-
trum, and the potential impact on the determination of
the growth-rate parameter would be significant [60, 61].
A realistic modeling of galaxy biasing relevant for the
scale of BAOs is thus essential, and a further improve-
ment of the power spectrum template needs to be devel-
oped.
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!   Commonly used model: the so-called 
“dispersion model” 

 

!   However introduces systematic error 
on βor f  (>10%) 

!   Need to improve the modelling  to 
enter “precision RSD cosmology era”! 

è EUCLID: percent accuracy on f (stat.) 

!   Significant work (mostly theoretical) 
done in the last 2 years to improve 
RSD models  

(Okumura & Jing (2011) 

(Taruya et al. 2010) 
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Although this approach has been used primarily to model observa-

tions of small-scale distortions (e.g. Peebles 1979; Bean et al. 1983;

Davis & Peebles 1983), equation (1) is valid in the linear regime as

well (Fisher 1995). Scoccimarro (2004) demonstrated that, provided

P(vz) is correct, the streaming ‘model’ is a valid description of the

relation between the real- and redshift-space correlation functions

on all scales.

As presented, equation (1) contains no cosmology. The afore-

mentioned investigations utilized the streaming model to estimate

the velocity dispersion of galaxy pairs, which was used to estimate

the matter density parameter !m through a ‘cosmic virial theorem’.

More recent studies of redshift-space distortions have utilized a

modified linear theory model of anisotropies that, when applied to

the real-space galaxy power spectrum PR(k), takes the form

PZ (k, µ) = PR(k)(1 + βµ2)2

(

1 +
k2σ 2

k µ2

2

)−1

, (2)

where β = !0.6
m /bg, bg is the linear bias parameter, and µ is the co-

sine of the angle between the wavevector k and the line of sight. The

term (1 + βµ2)2, derived from linear theory by Kaiser (1987), mod-

els the coherent flow of matter out of underdense regions and into

overdense regions. The last term on the right-hand side represents

an exponential distribution of random, uncorrelated peculiar veloci-

ties, which dominates PZ on small scales and is meant to encapsulate

the FOG effect described above. Equation (2), commonly referred

to as the ‘dispersion model’, has two free parameters, β and the

galaxy velocity dispersion σ k. Scoccimarro (2004) points out sev-

eral deficiencies in this model, both in the inability of linear theory

to properly describe anisotropies even in the large-scale limit, and

in the oversimplification of using a single parameter σ k, which has

no clear physical definition, to model small-scale velocities. Conse-

quently, equation (2) introduces a 10–15 per cent systematic error

in the determination of β (Hatton & Cole 1999; Paper I), a level of

error significant compared with the precision achievable with SDSS

and the 2dFGRS.

The goal of this paper is to create an analytic model for the

redshift-space correlation function by combining the streaming

model of equation (1) with the halo occupation distribution (HOD;

see e.g. Jing, Mo & Boerner 1998; Ma & Fry 2000; Peacock & Smith

2000; Seljak 2000; Benson 2001; Scoccimarro et al. 2001; Berlind

& Weinberg 2002; Cooray & Sheth 2002). The HOD quantifies bias

on both linear and non-linear scales for a given galaxy sample by

specifying the probability P(N|M) that a halo of mass M contains

N galaxies of a given type, together with any spatial and velocity

biases between galaxies and dark matter within individual haloes.

The HOD has been utilized to model the real-space clustering of

galaxies in the SDSS (Zehavi et al. 2004, 2005; Tinker et al. 2005)

and the 2dFGRS (Yang, Mo & van den Bosch 2003; Tinker et al.

2006b). In this paper we extend the HOD model from real space to

redshift space by providing a model for P(vz) which is physically

motivated and empirically calibrated on numerical simulations.

Several recent papers have presented calculations of redshift-

space distortions using halo models of dark matter and galaxy clus-

tering (Seljak 2001; White 2001; Kang et al. 2002; Cooray 2004;

Skibba et al. 2006; Slosar, Seljak & Tasitsiomi 2006), providing

insight into the role of non-linear dynamics and non-linear bias

in shaping clustering and anisotropy. However, these studies rely

on the same linear theory component of equation (2) for large-

scale anisotropies. Kang et al. (2002) show that their model only

reproduces the dark matter PZ (k, µ) from N-body simulations af-

ter introducing a σ k parameter for the haloes, even after the virial

motions of particles within haloes were taken into account. Skibba

et al. (2006) demonstrate the difficulty is modelling redshift-space

galaxy clustering in the transition region between quasi-linear and

fully non-linear regimes using a linear theory description of halo ve-

locities. Other recent papers have used the halo approach to model

galaxy and dark matter velocity statistics (Sheth et al. 2001a; Sheth

& Diaferio 2001; Sheth et al. 2001b). While the model outlined in

these papers is derived from first principles, in contrast to the cali-

brated model presented here, it is still based on linear theory, which

does not provide the required accuracy for a robust implementation

of equation (1). The purpose of our model is less as a first-principles

derivation of P(vz) than as a tool to extract information from forth-

coming observational data. In this context, the accuracy of the model

is the paramount concern. In the course of developing the model,

we will also gain new insight into the physics that determines P(vz),

especially the role of environment in producing a non-Gaussian ve-

locity distribution.

An accurate model for ξ (rσ , rπ ) with the HOD must properly

incorporate halo motions. A proper model for halo pairwise ve-

locities Ph(v) must correctly describe the DF for an arbitrary pair

of halo masses, at any angle with respect to the line of sight, and

as a function of separation. In the large-scale limit, linear theory

is adequate for describing the mean infalling velocities of haloes

(see e.g. Juszkiewicz, Springel & Durrer 1999; Sheth et al. 2001a).

However, the applicability of linear theory is problematic at scales

where the observational data are robust. At all scales, linear theory

does not accurately predict the pairwise dispersion (Scoccimarro

2004). Higher order moments also play an important role in Ph(v).

N-body results have shown that the radial velocity PDF of dark mat-

ter haloes exhibits significant skewness and kurtosis (Zurek et al.

1994; Juszkiewicz, Fisher & Szapudi 1998).1 The skewness arises

from the infall of matter into overdense regions (Juszkiewicz et al.

1998). The kurtosis, manifesting as exponential wings in both the

radial and tangential velocities, is due to local non-linear effects for

each halo in the pair. Scoccimarro (2004) concludes that a Gaus-

sian is never a good description of velocities, even at the largest

scales. Scoccimarro (2004) focuses on velocity statistics of dark

matter, but local non-linear effects apply to haloes as well (Kang

et al. 2002), and Ph(v) from simulations are non-Gaussian at all

scales. It is not sufficient for Ph(v) to describe the first two moments

of the velocity distribution. To accurately model ξ (rσ , rπ ), Ph(v)

must reasonably describe higher order moments of the distribution

as well (see e.g. Fisher et al. 1994).

As stated in Paper I, our method for analysing redshift-space dis-

tortions is to first use measurements of the projected correlation

function wp(rp) to determine the parameters of the HOD for a given

cosmology. If HOD parameters cannot be found that allow the cos-

mological model to reproduce the observed wp(rp) then that model

is ruled out. Once the HOD has been determined, the redshift-space

clustering is investigated by the analytic model presented here or the

N-body approach of Paper I. The cosmological parameters that most

directly influence redshift-space clustering are the matter density

parameter !m, the amplitude of the linear matter power spectrum,

defined here by σ 8, the rms linear-theory mass fluctuation in 8 h−1

Mpc spheres (where h ≡ H0/100 km s−1 Mpc−1), and the velocity

bias of the galaxy sample, which we parametrize by αv, the ratio

1 In this paper we use the convention of radial being the direction connecting

the halo pair, tangential being in a direction orthogonal to the radial, and line
of sight to be the direction from the observer. Velocities in these directions

will be referred to as vr, vt and vz , respectively.
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Improving RSD modelling 

 

!   [1] Go beyond Kaiser linear model  

!   Non-linear coupling between density and velocity 
divergence fields (Scoccimarro 2004, Taruya et al.2010) 

!   Pθθ(k), Pδθ(k) from N-body simulations (Jennings et 
al., 2010) or from improved Perturbation Theory 
(Crocce & Scoccimarro 2008, Taruya et al. 2009) 

!   [2] Better treat highly the non-linear regime (FoG)  

!   Use halo model (e.g. Tinker et al. 2006, 2007)?  

!   Add more freedom in the pairwise velocity 
distribution models (include scale dependence?) 
(e.g. Kwan et al. 2011) 

!   [3] Better treat galaxy (non-linear) bias 

!   Account for bias scale-dependence, how? 

To reduce systematic errors on parameters: need to account to some 
extent for non-linear evolution of galaxy clustering 

10

mode sampling has been restricted to the low-k modes,
k ! 0.1hMpc−1 [34]. Hence, the high-k modes of the
power spectrum plotted here may be affected by the ef-
fect of finite-mode sampling, and it would be significant
for higher-multipole spectrum because of its small am-
plitude. This might be still serious even with the 30
independent data of N-body simulations.
Perhaps, the best way to remedy these discrepancies

at low-z is both to apply the improved PT treatment
to the corrections A and B, and to consider the higher-
order contributions for correcting the effect of finite-mode
sampling over the relevant range of BAOs. The complete
analysis along the line of this need some progress and is
beyond the scope of this paper. Nevertheless, it should
be stressed that the model given by Eq. (18) captures
several important aspects of redshift distortion, and even
the present treatment with standard PT calculations of
the corrections A and B can provide a better description
for power spectra. In Fig. 7, we plot the fitted values
of the velocity dispersion obtained from the new predic-
tions shown in Fig. 5. The redshift dependence of the
fitted results roughly matches physical intuition, and is
rather consistent with the linear theory prediction. This
is contrasted to the cases neglecting the corrections (see
Fig. 3).
As another significance, we plot in Fig. 8 the

quadrupole-to-monopole ratios for redshift-space power
spectra. The new model predictions using standard and
improved PT calculations (solid and dashed) are com-
pared with those neglecting the correctionsA and B (dot-

dashed). The amplitude of the ratio P (S)
2 /P (S)

0 basically
reflects the strength of the clustering anisotropies, and is
proportional to (4f/3+ 4f2/7)/(1+ 2f/3+ f2/5) in the
limit k → 0 (e.g., [1, 3, 51]). One noticeable point is that
the N-body results of quadrupole-to-monopole ratio do
exhibit an oscillatory behavior, and the model including
the corrections (18) reproduces the N-body trends fairly
well. On the other hand, the phenomenological model
neglecting the corrections generally predicts the smooth

scale-dependence of the ratio P (S)
2 /P (S)

0 , and thus it fails
to reproduce the oscillatory feature. Since this oscillation
is originated from the acoustic feature in BAOs, Fig. 8
implies that the quadrupole-to-monopole ratio possesses
helpful information not only to constrain the growth-rate
parameter f , but also to determine the acoustic scales. In
other words, any theoretical template for redshift-space
power spectrum neglecting the corrections A and B may
produce a systematic bias in determining the growth-rate
parameter f(z), Hubble parameter H(z) and angular di-
ameter distance DA(z), which we will discuss in details
in next section.

V. IMPLICATIONS

The primary science goal of future galaxy surveys is to
clarify the nature of late-time cosmic acceleration, and
thereby constraining the parameters DA(z), H(z) and

FIG. 8: Quadrupole-to-monopole ratios for redshift-space
power spectrum, P (S)

2 (k)/P (S)
0 (k), given at z = 3, 2, 1, and

0.5 (from top to bottom). Solid and dashed lines respectively
represent the predictions based on new model of redshift dis-
tortion combining improved PT and standard PT calculation
to estimate the three different power spectra Pδδ, Pδθ and Pθθ.
Dot-dashed lines are the results based on the phenomeno-
logical model neglecting the corrections, which correspond to
solid lines in Fig. 2 (i.e., non-linear PKaiser + Gaussian DFoG).
The vertical arrows indicate the maximum wavenumber k1%
for standard PT (left) and improved PT (right).

f(z) through a precise measurement of BAOs in redshift
space would be the most important task. However, these
constraints may be biased if we use the incorrect model
of redshift distortion as theoretical template fitting to
observations. In this section, we explore the potential
impact on the uncertainty and bias in the parameter es-
timation for DA(z), H(z) and f(z).

A. Recovery of parameters DA, H and f

Let us first examine the parameter estimation using
the new model of redshift distortion. Fitting the theo-
retical template of power spectrum to the N-body data,
we will check if the best-fit parameters for DA(z), H(z)
and f(z) can be correctly recovered from the monopole
and quadrupole moments of anisotropic BAOs.
We model the power spectrum of N-body simulations

by

P (S)
model(k, µ) =

H(z)

Hfid(z)

{
DA,fid(z)

DA(z)

}2

P (S)(q, ν), (25)

where the comoving wavenumber k and the directional
cosine µ for the underlying cosmological model are re-
lated to the true ones q and ν by the Alcock-Paczynski

(Taruya et al. 2010) 
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The correlation function multipole moments of the Kaiser term in
the case of the model of Eq. 14 are given in Appendix A.

2.3 From mass to galaxies

The models derived in the previous section apply in the case of per-
fectly unbiased tracers of mass. Real galaxies however are biased
with respect to mass. Galaxy biasing is generally expected to be
non-linear, scale-dependent, stochastic, and to depend on galaxy
type, although it is still poorly constrained by observations. On
large scales in the linear regime, one expects the bias to be a con-
stant multiplicative factor to the mass density field as �

g

= b
L

�. In
that case, it is convenient to replace the growth rate f in the mod-
els by an effective distortion parameter � = f/b

L

, which accounts
for the large-scale linear bias b

L

of the considered galaxies. This
simple model is valid on large scales where the bias asymptotes
to a constant value but breaks down on small non-linear scales,
where bias possibly varies with scale. Recently, Okumura & Jing
(2011) showed that the scale-dependent behaviour of halo bias can
strongly affect the recovery of the growth rate. While some analyt-
ical approaches have been proposed to include bias non-linearity
in the model (Desjacques & Sheth 2010; Matsubara 2011), here we
follow a different route and assume that the galaxy scale-dependent
bias is known. In fact, the latter can be measured to some extent
from the data themselves in configuration space, once the shape for
the underlying non-linear mass power spectrum is assumed. Gen-
eral arguments may suggest that galaxy motions are also biased
with respect to the mass velocity field, while observations tend to
indicate that this bias is small (Tinker et al. 2006; Skibba et al.
2011). In this analysis we will neglect the galaxy velocity bias in
the models but discuss and quantify its impact on the recovery of f
in Section 3.4.

2.4 Constructing the galaxy redshift-space distortion models

We will use in this analysis different combinations of Kaiser terms,
damping functions, and bias prescriptions. Although we will work
in configuration space, we refer to the different models in this sec-
tion as their Fourier-space counterpart for clarity. All the models
we consider take the general form,

P s

g

(k, µ) = D(kµ�
v

)P
K

(k, µ, b) (24)

where,

D(kµ�
v

) =

8
<

:

exp(�(kµ�
v

)

2

)

1/(1 + (kµ�
v

)

2

)

P
K

(k, µ, b) =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

A : b2(k)P
��

(k) + 2µ2fb(k)P
��

(k)
+µ4f2P

��

(k)

B : b2(k)P
��

(k) + 2µ2fb(k)P
�✓

(k)
+µ4f2P

✓✓

(k)

C : b2(k)P
��

(k) + 2µ2fb(k)P
�✓

(k)
+µ4f2P

✓✓

(k) + C
A

(k, µ; f, b)
+C

B

(k, µ; f, b)

b(k) =

8
<

:

b
L

b
L

b
NL

(k)

Hereafter, we will refer as the different P
K

models to A,
B, and C. Model A corresponds to the Kaiser (1987) model with
the non-linear power spectrum instead of the linear one. It as-
sumes a linear coupling between the density and velocity fields
such as � / ✓. Model B is the generalisation proposed by Scoc-
cimarro (2004) that accounts for the non-linear coupling between
the density and velocity fields, making explicitly appearing the ve-
locity divergence auto-power spectrum and density–velocity diver-
gence cross-power spectrum. Finally, model C is an extension of
model B that contains the two additional correction terms proposed
by Taruya et al. (2010) to correctly account for the coupling be-
tween the Kaiser and damping terms. Besides, we will consider
two deterministic galaxy biasing prescriptions: a constant linear
bias b(k) = b

L

and a general non-linear bias which we define as
b(k) = (P

gg

/P
��

)

1/2

(k) = b
L

b
NL

(k), where P
gg

is the galaxy
power spectrum and b

NL

(k) is the scale-dependent part of the bias
that tends to unity at small k.

The redshift-space distortions models necessitate P
��

, P
�✓

,
and P

✓✓

real-space power spectra as input. Here we use the P
��

provided by CosmicEmu emulator (Lawrence et al. 2010) and the
fitting functions of Jennings et al. (2011) to obtain P

✓✓

and P
�✓

from P
��

. The latter fitting functions have an accuracy of 5% to
k = 0.2 for both standard ⇤CDM and quintessence dark energy
cosmological models. Alternatively P

✓✓

, P
�✓

, P
��

can be obtained
analytically using perturbation theory. Although standard pertur-
bation theory does not describe well the shape of these power
spectra on intermediate and non-linear scales, improved treatments
such as Renormalised Perturbation Theory (RPT, Crocce & Scoc-
cimarro 2006) or Closure Theory (Taruya et al. 2009) have shown
to be much more accurate (see Carlson et al. 2009, for a thorough
comparison). In particular, Closure Theory predictions are found
to match large N-body simulation real-space power spectra to the
percent-level up to k = 0.2 for z > 0.5 (Taruya et al. 2009).

In Fig. 1 and 2 we confront the P
��

, P
�✓

, P
✓✓

calibrated on
N-body simulations by Lawrence et al. (2010) and Jennings et al.
(2011) with Closure Theory 2-loop analytical predictions at z = 0

and z = 1. We find that all power spectra agree very well below
k ' 0.2 and k ' 0.3 respectively for the two redshifts considered,
except in the case of P

�✓

for which they systematically differ by
about 10%. While all other power spectra match on linear scales,
the P

�✓

fitting formula from Jennings et al. (2011) stays somewhat
below (dotted lines in the figures). We find that by multiplying the
latter by a factor of 1.1 one obtains an excellent match with Clo-
sure Theory predictions on both linear and non-linear scales (solid
lines in the figures). We will then adopt this correcting factor in the
following when calculating the redshift-space distortions models.

It is noticeable that Closure Theory breaks down at lower
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The correlation function multipole moments of the Kaiser term in
the case of the model of Eq. 14 are given in Appendix A.

2.3 From mass to galaxies

The models derived in the previous section apply in the case of per-
fectly unbiased tracers of mass. Real galaxies however are biased
with respect to mass. Galaxy biasing is generally expected to be
non-linear, scale-dependent, stochastic, and to depend on galaxy
type, although it is still poorly constrained by observations. On
large scales in the linear regime, one expects the bias to be a con-
stant multiplicative factor to the mass density field as �

g

= b
L

�. In
that case, it is convenient to replace the growth rate f in the mod-
els by an effective distortion parameter � = f/b
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, which accounts
for the large-scale linear bias b

L

of the considered galaxies. This
simple model is valid on large scales where the bias asymptotes
to a constant value but breaks down on small non-linear scales,
where bias possibly varies with scale. Recently, Okumura & Jing
(2011) showed that the scale-dependent behaviour of halo bias can
strongly affect the recovery of the growth rate. While some analyt-
ical approaches have been proposed to include bias non-linearity
in the model (Desjacques & Sheth 2010; Matsubara 2011), here we
follow a different route and assume that the galaxy scale-dependent
bias is known. In fact, the latter can be measured to some extent
from the data themselves in configuration space, once the shape for
the underlying non-linear mass power spectrum is assumed. Gen-
eral arguments may suggest that galaxy motions are also biased
with respect to the mass velocity field, while observations tend to
indicate that this bias is small (Tinker et al. 2006; Skibba et al.
2011). In this analysis we will neglect the galaxy velocity bias in
the models but discuss and quantify its impact on the recovery of f
in Section 3.4.

2.4 Constructing the galaxy redshift-space distortion models

We will use in this analysis different combinations of Kaiser terms,
damping functions, and bias prescriptions. Although we will work
in configuration space, we refer to the different models in this sec-
tion as their Fourier-space counterpart for clarity. All the models
we consider take the general form,

P s

g

(k, µ) = D(kµ�
v

)P
K

(k, µ, b) (24)

where,

D(kµ�
v

) =

8
<

:

exp(�(kµ�
v

)

2

)

1/(1 + (kµ�
v

)

2

)

P
K

(k, µ, b) =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

A : b2(k)P
��

(k) + 2µ2fb(k)P
��

(k)
+µ4f2P

��

(k)

B : b2(k)P
��

(k) + 2µ2fb(k)P
�✓

(k)
+µ4f2P

✓✓

(k)

C : b2(k)P
��

(k) + 2µ2fb(k)P
�✓

(k)
+µ4f2P

✓✓

(k) + C
A

(k, µ; f, b)
+C

B

(k, µ; f, b)

b(k) =

8
<

:

b
L

b
L

b
NL

(k)

Hereafter, we will refer as the different P
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models to A,
B, and C. Model A corresponds to the Kaiser (1987) model with
the non-linear power spectrum instead of the linear one. It as-
sumes a linear coupling between the density and velocity fields
such as � / ✓. Model B is the generalisation proposed by Scoc-
cimarro (2004) that accounts for the non-linear coupling between
the density and velocity fields, making explicitly appearing the ve-
locity divergence auto-power spectrum and density–velocity diver-
gence cross-power spectrum. Finally, model C is an extension of
model B that contains the two additional correction terms proposed
by Taruya et al. (2010) to correctly account for the coupling be-
tween the Kaiser and damping terms. Besides, we will consider
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bation theory does not describe well the shape of these power
spectra on intermediate and non-linear scales, improved treatments
such as Renormalised Perturbation Theory (RPT, Crocce & Scoc-
cimarro 2006) or Closure Theory (Taruya et al. 2009) have shown
to be much more accurate (see Carlson et al. 2009, for a thorough
comparison). In particular, Closure Theory predictions are found
to match large N-body simulation real-space power spectra to the
percent-level up to k = 0.2 for z > 0.5 (Taruya et al. 2009).
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latter by a factor of 1.1 one obtains an excellent match with Clo-
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lines in the figures). We will then adopt this correcting factor in the
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The correlation function multipole moments of the Kaiser term in
the case of the model of Eq. 14 are given in Appendix A.

2.3 From mass to galaxies

The models derived in the previous section apply in the case of per-
fectly unbiased tracers of mass. Real galaxies however are biased
with respect to mass. Galaxy biasing is generally expected to be
non-linear, scale-dependent, stochastic, and to depend on galaxy
type, although it is still poorly constrained by observations. On
large scales in the linear regime, one expects the bias to be a con-
stant multiplicative factor to the mass density field as �
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= b
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�. In
that case, it is convenient to replace the growth rate f in the mod-
els by an effective distortion parameter � = f/b

L

, which accounts
for the large-scale linear bias b

L

of the considered galaxies. This
simple model is valid on large scales where the bias asymptotes
to a constant value but breaks down on small non-linear scales,
where bias possibly varies with scale. Recently, Okumura & Jing
(2011) showed that the scale-dependent behaviour of halo bias can
strongly affect the recovery of the growth rate. While some analyt-
ical approaches have been proposed to include bias non-linearity
in the model (Desjacques & Sheth 2010; Matsubara 2011), here we
follow a different route and assume that the galaxy scale-dependent
bias is known. In fact, the latter can be measured to some extent
from the data themselves in configuration space, once the shape for
the underlying non-linear mass power spectrum is assumed. Gen-
eral arguments may suggest that galaxy motions are also biased
with respect to the mass velocity field, while observations tend to
indicate that this bias is small (Tinker et al. 2006; Skibba et al.
2011). In this analysis we will neglect the galaxy velocity bias in
the models but discuss and quantify its impact on the recovery of f
in Section 3.4.

2.4 Constructing the galaxy redshift-space distortion models

We will use in this analysis different combinations of Kaiser terms,
damping functions, and bias prescriptions. Although we will work
in configuration space, we refer to the different models in this sec-
tion as their Fourier-space counterpart for clarity. All the models
we consider take the general form,

P s

g

(k, µ) = D(kµ�
v

)P
K

(k, µ, b) (24)

where,

D(kµ�
v

) =

8
<

:

exp(�(kµ�
v

)

2

)

1/(1 + (kµ�
v

)

2

)

P
K

(k, µ, b) =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

A : b2(k)P
��

(k) + 2µ2fb(k)P
��

(k)
+µ4f2P

��

(k)

B : b2(k)P
��

(k) + 2µ2fb(k)P
�✓

(k)
+µ4f2P

✓✓

(k)

C : b2(k)P
��

(k) + 2µ2fb(k)P
�✓

(k)
+µ4f2P

✓✓

(k) + C
A

(k, µ; f, b)
+C

B

(k, µ; f, b)

b(k) =

8
<

:

b
L

b
L

b
NL

(k)

Hereafter, we will refer as the different P
K

models to A,
B, and C. Model A corresponds to the Kaiser (1987) model with
the non-linear power spectrum instead of the linear one. It as-
sumes a linear coupling between the density and velocity fields
such as � / ✓. Model B is the generalisation proposed by Scoc-
cimarro (2004) that accounts for the non-linear coupling between
the density and velocity fields, making explicitly appearing the ve-
locity divergence auto-power spectrum and density–velocity diver-
gence cross-power spectrum. Finally, model C is an extension of
model B that contains the two additional correction terms proposed
by Taruya et al. (2010) to correctly account for the coupling be-
tween the Kaiser and damping terms. Besides, we will consider
two deterministic galaxy biasing prescriptions: a constant linear
bias b(k) = b

L

and a general non-linear bias which we define as
b(k) = (P

gg

/P
��

)

1/2

(k) = b
L

b
NL

(k), where P
gg

is the galaxy
power spectrum and b

NL

(k) is the scale-dependent part of the bias
that tends to unity at small k.

The redshift-space distortions models necessitate P
��

, P
�✓

,
and P

✓✓

real-space power spectra as input. Here we use the P
��

provided by CosmicEmu emulator (Lawrence et al. 2010) and the
fitting functions of Jennings et al. (2011) to obtain P

✓✓

and P
�✓

from P
��

. The latter fitting functions have an accuracy of 5% to
k = 0.2 for both standard ⇤CDM and quintessence dark energy
cosmological models. Alternatively P

✓✓

, P
�✓

, P
��

can be obtained
analytically using perturbation theory. Although standard pertur-
bation theory does not describe well the shape of these power
spectra on intermediate and non-linear scales, improved treatments
such as Renormalised Perturbation Theory (RPT, Crocce & Scoc-
cimarro 2006) or Closure Theory (Taruya et al. 2009) have shown
to be much more accurate (see Carlson et al. 2009, for a thorough
comparison). In particular, Closure Theory predictions are found
to match large N-body simulation real-space power spectra to the
percent-level up to k = 0.2 for z > 0.5 (Taruya et al. 2009).

In Fig. 1 and 2 we confront the P
��

, P
�✓

, P
✓✓

calibrated on
N-body simulations by Lawrence et al. (2010) and Jennings et al.
(2011) with Closure Theory 2-loop analytical predictions at z = 0

and z = 1. We find that all power spectra agree very well below
k ' 0.2 and k ' 0.3 respectively for the two redshifts considered,
except in the case of P

�✓

for which they systematically differ by
about 10%. While all other power spectra match on linear scales,
the P

�✓

fitting formula from Jennings et al. (2011) stays somewhat
below (dotted lines in the figures). We find that by multiplying the
latter by a factor of 1.1 one obtains an excellent match with Clo-
sure Theory predictions on both linear and non-linear scales (solid
lines in the figures). We will then adopt this correcting factor in the
following when calculating the redshift-space distortions models.

It is noticeable that Closure Theory breaks down at lower
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the different populations considered (see inset). The former is defined as
b
NL

(r) =
⇥
⇠
gg

(r)/
�
b2
L

⇠
��

(r)
�⇤

1/2.

about 30h�1

Mpc (e.g. Saunders et al. 1992; Cabré & Gaztañaga
2009b). In the following we will therefore make the assumption
that ⇠

gg

(r) is known and use the measured real-space ⇠
gg

(r) in
the galaxy catalogues to infer b

NL

(r) in the models. In fact it is
not necessary to know the exact shape of ⇠

gg

(r) on scales larger
than about 20� 30 h

�1 Mpc, where one generally finds the galaxy
bias to be almost scale-independent and can thus safely assume
b
NL

(r) = 1, except in the case of more non-linear galaxies for
which the departure from bias scale-dependence may extend to
larger scales. We present in Fig. 9 the scale-dependence of galaxy
bias b

NL

(r) for the various populations considered in this anal-
ysis. In this figure, the linear bias b

L

has been determined by
minimising the difference between ⇠

gg

and b2
L

⇠
��

on scales above
r = 10h

�1

Mpc. One can see that the non-linearities in galaxy
bias give rise to up to about 30% variations in the real-space clus-
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tering at 1h�1

Mpc < r < 10h
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Mpc, the strength of the effects
increasing for more luminous galaxies.

Figs. 11 and 10 show the relative error on the growth rate ob-
tained when including bias scale-dependence, i.e. when replacing
b
L

by b
L

b
NL

(r) in the models. We find that including the bias
scale-dependence information generally improves the estimation of
f , in particular when using the smallest scales in the fit (rmin

? <
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!   Building an accurate RSD non-
linear model for galaxies: 
importance of galaxy biasing  

!   Non-linearities: couplings between  
density and velocity divergence fields 
and between damping and Kaiser terms  

(de la Torre & Guzzo 2012) 
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the measured ⇠(r?, rk) in the galaxy catalogue. The top panel shows the
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v

,b
L
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the bottom panel shows the fiducial prediction of the models. We note that
in the latter case, �

v

is fixed to its linear value.

3.3 Effect of galaxy non-linear bias

We now let the galaxy bias varying with scale and study the effect
of including non-linear biasing in the models. In general, the galaxy
bias in configuration space can be defined as,

b(r) =

✓
⇠
gg

(r)

⇠
��

(r)

◆
1/2

= b
L

b
NL

(r) (26)

where ⇠
gg

is the galaxy real-space auto-correlation function and
b
NL

(r) is the non-linear scale-dependent part of the bias. It is im-
portant to stress that ⇠

gg

(r) is directly measurable from observa-
tions by deprojecting the observed projected correlation function
w(r?) (Saunders et al. 1992) as,

⇠
gg

(r) = � 1

⇡

Z 1

r

dw(r?)

dr?

�
r2? � r2

��1/2

dr? (27)

' � 1

⇡

X

j>i

w
j+1

� w
j

r
j+1

� r
j

ln

0

@
r
j+1

+

q
r2
j+1

� r2
i

r
j

+

q
r2
j

� r2
i

1

A ,

where w
i

= w(r
i

) in the logarithmic bin centred on r?,i

. This
procedure allows one to correctly recover the shape of ⇠

gg

(r) up to
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!   Testing models in configuration space with realistic galaxy catalogues 
made from populating a Gpc3 simulation with galaxies (HOD) 

!   Galaxy linear bias as a free parameter in the fit 
(de la Torre & Guzzo 2012) 
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about 30h�1

Mpc (e.g. Saunders et al. 1992; Cabré & Gaztañaga
2009b). In the following we will therefore make the assumption
that ⇠

gg

(r) is known and use the measured real-space ⇠
gg

(r) in
the galaxy catalogues to infer b

NL

(r) in the models. In fact it is
not necessary to know the exact shape of ⇠

gg

(r) on scales larger
than about 20� 30 h

�1 Mpc, where one generally finds the galaxy
bias to be almost scale-independent and can thus safely assume
b
NL

(r) = 1, except in the case of more non-linear galaxies for
which the departure from bias scale-dependence may extend to
larger scales. We present in Fig. 9 the scale-dependence of galaxy
bias b

NL

(r) for the various populations considered in this anal-
ysis. In this figure, the linear bias b

L

has been determined by
minimising the difference between ⇠

gg

and b2
L

⇠
��

on scales above
r = 10h
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Mpc. One can see that the non-linearities in galaxy
bias give rise to up to about 30% variations in the real-space clus-
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Figs. 11 and 10 show the relative error on the growth rate ob-
tained when including bias scale-dependence, i.e. when replacing
b
L

by b
L

b
NL

(r) in the models. We find that including the bias
scale-dependence information generally improves the estimation of
f , in particular when using the smallest scales in the fit (rmin

? <
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galaxies.

Desjacques & Sheth (2010), who estimated an effect of 1.6% using
Fisher matrix formalism.

These findings emphasise the importance of accounting for
velocity bias while modelling redshift-space distortions, in partic-
ular if one is interested in reaching the few percent accuracy on
the growth rate parameter, as planned in the future massive red-
shift surveys in preparation. Indeed, our results suggest a net ef-
fect of about �3% on the estimated growth rate parameter (almost
independently of the considered model), larger than the expected
statistical error in those surveys. In principle, galaxy velocity bias
can be included in the models by adding an effective velocity bias
factor in front of the terms involving the velocity divergence field
(e.g. Desjacques & Sheth 2010). At first approximation, one could
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Figure 14. Top: relative systematic error on f for different galaxy popula-
tions (see inset) while using model C with exponential damping and non-
linear bias. The light (dark) shaded area encompasses the region where the
absolute value of the relative error on f is lower than 2% (5%). Bottom:
corresponding 1� statistical errors on f .

assume this velocity bias factor to be constant and set it as a free
parameter while fitting redshift-space distortions. Introducing more
degrees of freedom in the models would however tend to increase
the statistical error on the growth rate.

4 THE CASE OF HIGHLY BIASED GALAXY
POPULATIONS

We previously confronted models of redshift-space distortions with
measurements of ⇠(r?, rk) from simulated catalogues of galaxies
with luminosities above the characteristic luminosity. In principle,
we might expect the use of more highly biased objects to be more
suitable to constrain f from observations. Indeed, the high clus-
tering of these tracers, and in turn their higher two-point correla-
tion function signal, may allow us to reduce the uncertainties in the
measurement of the growth rate (see Bianchi et al. 2012). These
luminous massive galaxies, which more likely reside in the most
massive haloes, have undergone stronger non-linear clustering evo-
lution. As a result, they exhibit stronger bias scale-dependence as
shown in Fig. 9 and the inclusion of b

NL

in the models may become
critical (e.g. Cabré & Gaztañaga 2009a).

We consider in this section more luminous galaxy samples
with L > 2L⇤ and L > 3L⇤ and complement them with simu-
lated Luminous Red Galaxies (LRG) drawn from LasDamas suite
of simulations. More precisely, we make use of 100 mock realisa-
tions of LRG faint (M

r

< �21.2) galaxies. The latter catalogue
has been built to accurately reproduce the clustering of observed
LRGs in the data release 7 of the SDSS (McBride et al., in prepa-
ration).

We compare in Fig. 14 the relative systematic error on the
growth rate obtained for these highly biased galaxies. Here we use
only model C with exponential damping and include bias scale-

c� 2011 RAS, MNRAS 000, 1–14

!   Most advanced non-linear models allows us to reach the 4% accuracy on f 

!   To be investigated to reach the percent level:  

!   Velocity bias: it can introduce 1-3% bias on f (towards lower values) 

!   Luminous/massive galaxy populations: larger systematic errors, bias issue? 

(de la Torre & Guzzo 2012) 



VIPERS overview 
!   PI: Luigi Guzzo (Brera observatory, Milan) 

!   440.5 VLT hours with VIMOS (started end of 2008) 

!   24 deg2 in the CFHTLS W1 & W4 fields (288 pointings) 

!   IAB<22.5, LR-Red grism with 45 min exposure 

!   5-band ugriz + NIR imaging (soon) 

!   z>0.5 colour pre-selection 

!   40% sampling with a new short-slit technique (one-pass strategy) 

Final catalogue: 100,000 redshifts at 0.5<z<1.2 

Science [cosmology and galaxy evolution]: 

!   Redshift- and real-space clustering, massive clusters of galaxy, 
density field, galaxy and AGN evolution, etc... 

Institutes involved: 

!   Milan (2), Bologna, Edinburgh, Garching, Marseille, Paris, 
Portsmouth, Warsaw è 45 people 

 



VIPERS current status 

•  36,200 good-quality redshifts at 
0.5<z<1.2 

•  42% of the survey completed: 
about 10 deg2 covered 

•  First public release: March 2012 
(only 20% data)  

Luigi Guzzo 

INAF - Osservatorio di Brera, Milan  



VIPERS: real-space clustering 

!   Early results: projected two-point 
correlation function wp(rp) 

!   Well defined correlation function on 
0.1<rp<20 scales in the early data 

!   Very promising to study how galaxy 
clustering depend on luminosity, 
stellar mass, colour, environment ... 
at 0.5<z<1.2 

!   Dramatically reduce sample variance 
on clustering measurements at 
0.5<z<1.2, which affect all current 
z=1 redshift surveys    

(de la Torre & VIPERS , in prep.) 
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VIPERS: RSD 
!   Early results: anisotropic two-

dimensional two-point correlation 
function ξ(rp,π)  

!   VIPERS will provide an (almost) 
unbiased measurement of the growth 
rate    

!   VIPERS will measure f with 6-10% 
accuracy at 0.5<z<1.0 

(de la Torre & VIPERS, in prep.) 
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Figure 2. Fisher matrix forecasts of the errors expected on the growth rate (dark-blue error bars), expressed through the bias-free
combination f(z

i

)�
8

(z
i

), obtainable from the Euclid baseline redshift survey through the combination of amplitude and redshift-space
anisotropy of galaxy clustering. The light-blue error bars (shown with a slight o↵set in redshift for visualisation purposes) represent the
case of a galaxy density reduced by a factor of two with respect to that forecasted for the galaxies observed by Euclid (Geach et al.
2008). The solid black line represents the fiducial f �

8

, computed for the cosmology shown in Eq. (5). The dashed green line shows the
growth of a flat DGP model (calculated by numerical integration of the corresponding equation for f(z)). The red dotted line represents
f �

8

of a coupled models with coupling parameter �
c

= 0.2. All models are computed for ⌦
m0

= 0.271 and for the same �
8

(z
CMB

) as for
the fiducial model. In the same plot we also show measurements of f �

8

from past surveys (magenta error bars) and the recent Wiggle-z
survey (pink error bars), see explanation in the text.

survey reference paper z f�
8

VVDS F22 Guzzo et al. (2008) 0.77 0.49± 0.19
wide

2SLAQ Ross et al. (2007) 0.55 0.50± 0.07
galaxy

SDSS LRG Cabre & Gaztanaga (2009) 0.34 0.53± 0.07
Samushia et al. (2011) 0.25 0.35± 0.06
Samushia et al. (2011) 0.37 0.46± 0.04

2dFGRS Hawkins et al. (2003) 0.15 0.39± 0.08

WiggleZ Blake et al. (2011) 0.22 0.49± 0.07
0.41 0.45± 0.04
0.6 0.43± 0.04
0.78 0.78± 0.04

Table 2. Current measurements of f�
8

We notice that we reach accuracies between 1.3% and
4.4% in the measurement of f �

8

depending on the redshift
bin, where the highest precision is reached for redshifts z '
1.0.

5.1 Comparison to other surveys

Together with Euclid, other ongoing and future surveys will
constrain cosmology by measuring f�

8

. Here we compare the
relative errors on f�

8

obtained using di↵erent spectroscopic
galaxy redshift surveys. In particular, we consider the BOSS
survey5 (see Schlegel et al. 2009), the BigBOSS6 Emission
Line Galaxies (ELGs) and Luminous Red Galaxies (LRGs)7

Regarding the fiducial bias, we use the forecasts by Orsi
et al. (2009) for BigBOSS ELGs. We use b = 2G(0)/G(z)
(where G(z) is the standard linear growth rate) for BOSS
and BigBOSS LRGs (see Reid et al. (2010)). Table 3 sum-
marises the main characteristics of these surveys.

The results are shown in Fig. 3. We first notice that Eu-
clid (represented by dark-green circles) will obtain the most
precise measurements of growth, even in the pessimistic situ-
ation of detecting only half the galaxies (light-green circles).
In redshift coverage it will be perfectly complementary to
BOSS. The partial overlap with BigBOSS, whose ELG sam-
ple will reach similar errors up to z ⇠ 1.4, will allow for inter-
esting useful independent measurements and cross-checks.

5 http://cosmology.lbl.gov/BOSS/
6 http://bigboss.lbl.gov/
7 We thank the BigBOSS consortium for providing their latest
estimate of their expected galaxy densities, which we used in cre-
ating this plot.
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VIPERS 

(Majerotto, Guzzo & EUCLID, 2012) 


