Probing the growth rate of structure with VIPERS survey

Sylvain de la Torre IfA – ROE

Galaxy redshift survey to probe cosmology 12h

Is the Universe homogeneous on large scales? Constituents? e.g. spectral index, nongaussianity, neutrinos

What is the expansion rate of the Universe? e.g. quintessence, Λ

> Understanding acceleration

How does structure form and grow within this background? e.g. GR, modified

Baryonic Acoustic Oscillations

(Amanullah et al. 2010)

- BAO very useful to constrain the expansion history and dark energy EoS
- **but** ... not sufficient to lift the degeneracy between dark energy and modified gravity models

The growth rate of structure depends on gravity theory

Z=0

 $\ddot{\delta} + 2H(t)\dot{\delta} = 4\pi G \langle \rho \rangle \delta$ $\delta^{+}(\bar{x},t) = \hat{\delta}(\bar{x})D(t)$

Z=6

 $= \frac{d\ln D}{d\ln a}$

Z=2

(Credit: V. Springel)

Redshift-space distortions

• Measured correlation functions from *z*surveys are distorted due to galaxy peculiar motions

• The linear component of these distortions maps the motions due to the growth rate of structure

Redshift-space distortions

 Commonly used model: the so-called "dispersion model"

$$P_Z(k,\mu) = P_R(k)(1+\beta\mu^2)^2 \left(1+\frac{k^2\sigma_k^2\mu^2}{2}\right)^{-1} \quad ``$$

- However introduces systematic error on β or f (>10%)
- Need to improve the modelling to enter "precision RSD cosmology era"!
- \rightarrow EUCLID: percent accuracy on f (stat.)
- Significant work (mostly theoretical) done in the last 2 years to improve RSD models

Improving RSD modelling

To reduce systematic errors on parameters: need to account to some extent for **non-linear evolution** of galaxy clustering

O [1] Go beyond Kaiser linear model

- Non-linear coupling between density and velocity divergence fields (Scoccimarro 2004, Taruya et al.2010)
- $P_{\theta\theta}(k)$, $P_{\delta\theta}(k)$ from N-body simulations (Jennings et al., 2010) or from improved Perturbation Theory (Crocce & Scoccimarro 2008, Taruya et al. 2009)

• [2] Better treat highly the non-linear regime (FoG)

- Use halo model (e.g. Tinker et al. 2006, 2007)?
- Add more freedom in the pairwise velocity distribution models (include scale dependence?) (e.g. Kwan et al. 2011)

• [3] Better treat galaxy (non-linear) bias

Account for bias scale-dependence, how?

(Taruya et al. 2010)

RSD non-linear models for galaxies

DS(1)

D/1

 Building an accurate RSD nonlinear model for galaxies: importance of galaxy biasing

$$P_{g}(k,\mu) = D(k\mu\sigma_{v})P_{K}(k,\mu,b)$$

$$D(k\mu\sigma_{v}) = \begin{cases} \exp(-(k\mu\sigma_{v})^{2}) \\ 1/(1+(k\mu\sigma_{v})^{2}) \end{cases}$$

$$P_{K}(k,\mu,b) = \begin{cases} A: b^{2}(k)P_{\delta\delta}(k) + 2\mu^{2}fb(k)P_{\delta\delta}(k) \\ +\mu^{4}f^{2}P_{\delta\delta}(k) \\ B: b^{2}(k)P_{\delta\delta}(k) + 2\mu^{2}fb(k)P_{\delta\theta}(k) \\ +\mu^{4}f^{2}P_{\theta\theta}(k) \\ C: b^{2}(k)P_{\delta\delta}(k) + 2\mu^{2}fb(k)P_{\delta\theta}(k) \\ +\mu^{4}f^{2}P_{\theta\theta}(k) + C_{A}(k,\mu;f,b) \\ +C_{B}(k,\mu;f,b) \end{cases}$$

D (1)

7 \

 Non-linearities: couplings between density and velocity divergence fields and between damping and Kaiser terms

RSD non-linear models

- Testing models in configuration space with realistic galaxy catalogues made from populating a Gpc³ simulation with galaxies (HOD)
- Galaxy linear bias as a free parameter in the fit

(de la Torre & Guzzo 2012)

RSD non-linear models

- Most advanced non-linear models allows us to reach the 4% accuracy on f
- To be investigated to reach the percent level:
 - Velocity bias: it can introduce 1-3% bias on *f* (towards lower values)
 - Luminous/massive galaxy populations: larger systematic errors, bias issue?

(de la Torre & Guzzo 2012)

VIPERS overview

- PI: Luigi Guzzo (Brera observatory, Milan)
- 440.5 VLT hours with VIMOS (started end of 2008)
- 24 deg² in the CFHTLS W1 & W4 fields (288 pointings)
- \circ I_{AB}<22.5, LR-Red grism with 45 min exposure
- 5-band ugriz + NIR imaging (soon)
- z>0.5 colour pre-selection
- 40% sampling with a new short-slit technique (one-pass strategy)

Final catalogue: 100,000 redshifts at 0.5<z<1.2

Science [cosmology and galaxy evolution]:

• Redshift- and real-space clustering, massive clusters of galaxy, density field, galaxy and AGN evolution, etc...

Institutes involved:

 Milan (2), Bologna, Edinburgh, Garching, Marseille, Paris, Portsmouth, Warsaw → 45 people

VIPERS current status

36,200 good-quality redshifts at 0.5<z<1.2

•

•

- 42% of the survey completed: about 10 deg² covered
 - First public release: March 2012 (only 20% data)

VIPERS: real-space clustering

- **Early results**: projected two-point correlation function $w_p(r_p)$
- Well defined correlation function on $0.1 \le r_p \le 20$ scales in the early data
- Very promising to study how galaxy clustering depend on luminosity, stellar mass, colour, environment ... at 0.5<z<1.2
- Dramatically reduce sample variance on clustering measurements at 0.5<z<1.2, which affect all current z=1 redshift surveys

VIPERS: RSD

• **Early results**: anisotropic twodimensional two-point correlation function $\xi(r_p, \pi)$

- VIPERS will provide an (almost) unbiased measurement of the growth rate
- VIPERS will measure *f* with 6-10% accuracy at 0.5<z<1.0

