Clustering from high quality photometric redshifts: the case of ALHAMBRA

Pablo Arnalte-Mur (ICC-Durham) & The ALHAMBRA Team

DEX VIII Meeting Durham, 13/01/2012

ALHAMBRA

Advanced, Large Homogeneous Area, Medium-Band, Redshift Astronomical survey

- A pencil-beam, multi-band photometric survey with the aim of providing a *cosmic tomography* to study cosmic evolution
 - ► Homogeneous and unbiased selection of objects over large *z* range
 - Depth Area compromise (to avoid cosmic variance)
 - Accurate z determination

Exploit photo-z techniques at maximum

- Total area: 4deg², distributed in 8 separate fields (overlap with other surveys: SDSS, DEEP2, COSMOS, HDF-N, GROTH, ELAIS-N1)
- Survey uses 3.5-m Calar Alto telescope, with cameras LAICA (optical) + Ω -2000 (NIR)
- More info.: Moles et al. (2008), http://www.iaa.es/alhambra

ALHAMBRA filter system

Filter system purpose-designed to minimise $\sigma_z/\sqrt{N_{good}}$ (Benítez et al., 2009b)

20 contiguous filters in the optical:

- Top hat filters
- Constant width (310 Å)
- Minimal overlap between filters

Add JHK_s observations to break photo-z degeneracies

Examples of "ALHAMBRA spectra"

 \Rightarrow Expect $\sigma_z/(1+z) \le 0.015$ for $I_{AB} \lesssim 24$ (survey's depht: $I_{AB} \simeq 25$)

Future surveys

- Two PAU surveys will extend this technique (Benítez et al., 2009a): $\Rightarrow \sim 40-50$ filters $\rightarrow \text{ expect } \sigma_z/(1+z) \simeq 0.003$ for LRGs ($i_{AB} \lesssim 22.5$)
- $PAUS^1$: ~ 200 deg² using WHT (La Palma, Spain)
- $\bullet~J\text{-PAS}^2$: $\sim 8000\,\text{deg}^2$ using new dedicated ACTUEL telescope (Teruel, Spain)
- Expected to start in 2012-2013
- Much larger volumes: suited for very large-scale cosmological studies: growth rate, (radial) BAO, ...

²http://w3.iaa.es/~benitez/jpas/main.html

¹http://www.pausurvey.org/

ALHAMBRA: Present status

- Observations finished in 2011
- Ongoing optimisation of object detection and photo-z (using BPZ) \rightarrow final catalogue in the next months
- Work with preliminary catalogue (IDR3) covering $\sim 60\%$ of total area
- Scientific explotation ongoing: galaxy clustering, luminosity functions, morphology, stellar populations, QSOs, EROs, Ly- α emitters, ...

ALHAMBRA: Present status

- Observations finished in 2011
- Ongoing optimisation of object detection and photo-z (using BPZ) \rightarrow final catalogue in the next months
- Work with preliminary catalogue (IDR3) covering $\sim 60\%$ of total area
- Scientific explotation ongoing: galaxy clustering, luminosity functions, morphology, stellar populations, QSOs, EROs, Ly-α emitters, ...

Catalogue selection for LSS

 \Rightarrow Photo-z quality cut ($p_{\rm odds} \geq$ 0.85) \rightarrow selects \sim 40% objects with best photo-z

Characteristics of the catalogue (after selection)

• Final selected catalogue: $N_{\rm obj} = 106,713$ (with no photo-*z* selection, $N \simeq 290,000$)

Characteristics of the catalogue (after selection)

- Final selected catalogue: $N_{\rm obj} = 106,713$ (with no photo-*z* selection, $N \simeq 290,000$)
- $z_m = 0.81$, bulk on N(z) in $z \in [0.3, 1.5]$

Characteristics of the catalogue (after selection)

- Final selected catalogue: $N_{\rm obj} = 106,713$ (with no photo-*z* selection, $N \simeq 290,000$)
- $z_m = 0.81$, bulk on N(z) in $z \in [0.3, 1.5]$
- Photo-z accuracy:
 - Estimated: $\left\langle \frac{\sigma_z}{1+z} \right\rangle = 0.012$
 - Comparison with \sim 3,600 spectra: $\sigma_z \simeq 0.014(1+z)$

Pablo Arnalte-Mur (ICC - Durham)

Clustering from photo-z: ALHAMBRA

Sample selection for galaxy clustering

Study clustering as function of z and $L \rightarrow$ selection of samples in $z - M_B$ plane:

- 3 bins in z: [0.3,0.6], [0.6,1.0], [1.0,1.5]
- "Threshold samples" in luminosity: impose faint limit $M_B \leq M_B^{th}$

Projected correlation functions

Photo-z → large uncertainty in LOS distance (π) → measure projected correlation function w(r_p) (with long integration along π)
 Measure w(r_p) for each of the selected samples:

Simple fits to data

 \Rightarrow fits in range $r_p \in [0.2, 15] h^{-1} \text{Mpc}$

Power-law fit:

- $\xi(r) = \left(rac{r}{r_0}
 ight)^{-\gamma} o$ power law for $w(r_\perp)$
- Fits with fixed $\gamma = 1.7$

Simple fits to data

 \Rightarrow fits in range $r_p \in [0.2, 15] h^{-1} \operatorname{Mpc}$

Power-law fit:

- $\xi(r) = \left(rac{r}{r_0}
 ight)^{-\gamma} o$ power law for $w(r_\perp)$
- Fits with fixed $\gamma = 1.7$

CAMB (+ HaloFit) model:

- Fixed parameters, only change is amplitude \rightarrow bias
- Compare with *b*(*L*) dependence in SDSS & 2dFGRS

Several issues (work in progress)

- Definition of catalogue:
 - Photometric depth (magnitude limit) in different bands
 - Photo-z (possible biases?)
- Photo-z quality depends on type, $z \rightarrow$ How to deal with it?

 Possible systematics/artifacts coming from photo-z technique (radial bumps)

 Develop clustering analysis methods to use all the available information: p(z) for each galaxy

Conclusions

- ALHAMBRA provides a deep catalogue covering a significant area with high quality photo-z
- Can study evolution of contents of the universe for a large range in z
- Will work as test bench for larger surveys using similar multi-band concept: PAU surveys
- Preliminary calculations of $w(r_p)$ for several samples in $(z, L) \rightarrow$ show the capabilities of ALHAMBRA for these clustering studies, but many issues still to be tackled