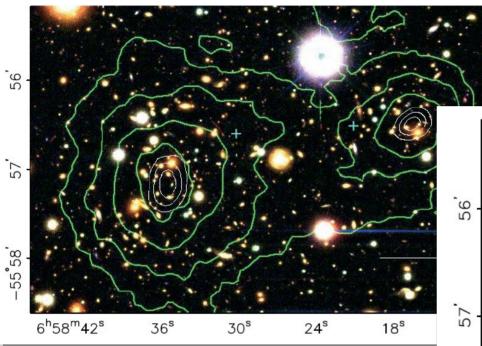
3D Dark Matter Mapping: A New Approach to Weak Lensing Tomography

Jake VanderPlas University of Washington

Andrew Connolly Bhuvnesh Jain Mike Jarvis

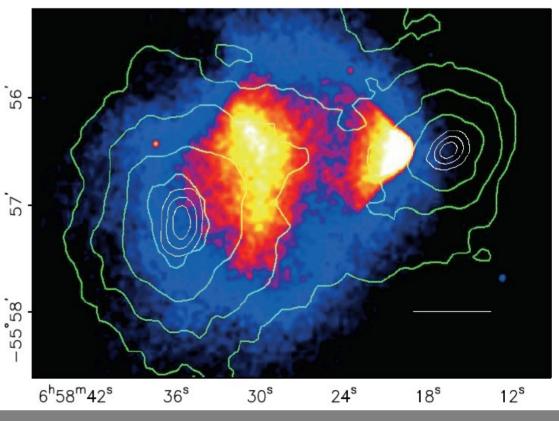
Ten Years of Cosmic Shear

Classic Weak Lensing: 2D projection



Clowe et al. 2006

No extraction of line-of-sight information

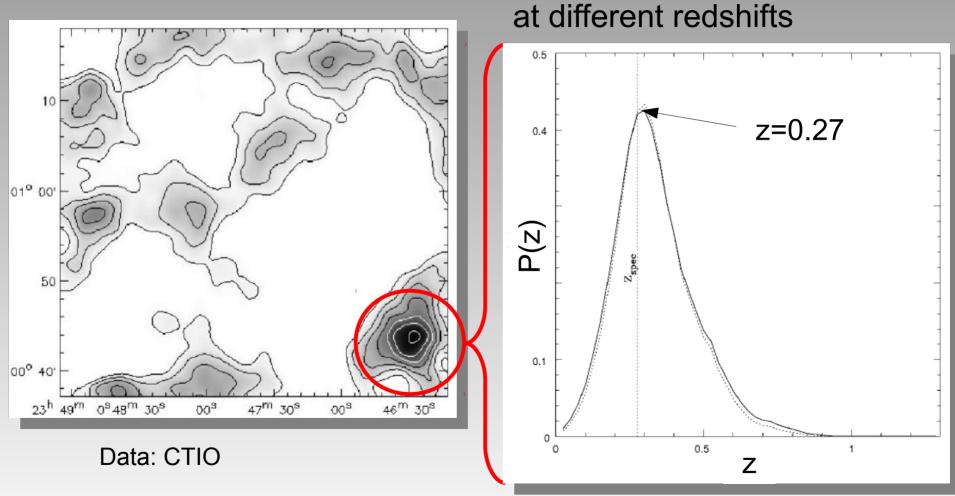


Moving toward 3D

Fitted SIS and NFW profiles

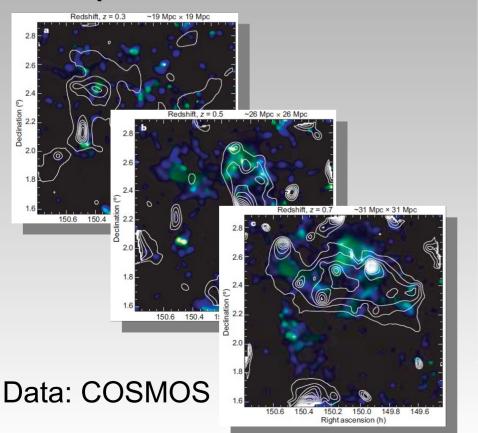
Parametric Methods

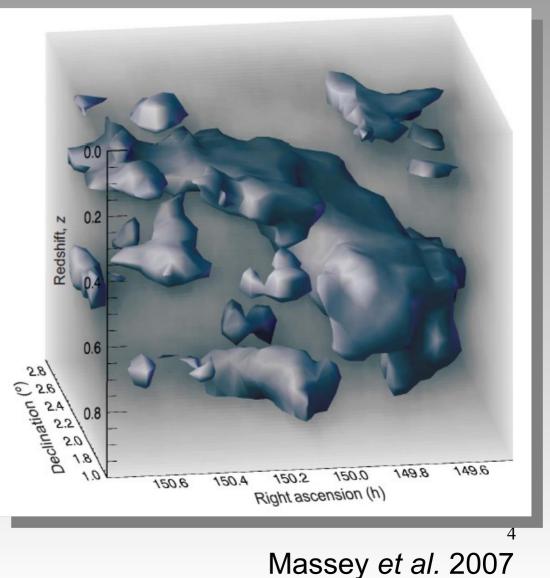
e.g. Wittman et al. 2001



Moving toward 3D Non-parametric " $2^{1}/_{2}$ D" reconstruction

3D representation from three sourceplanes





Toward a full 3D reconstruction:

$$\gamma \rightarrow \kappa$$
: $\gamma(\vec{\theta}) = \int d\vec{\theta}'^2 \kappa(\vec{\theta}') D(\vec{\theta} - \vec{\theta}')$

 $\vec{y} = P_{\gamma\kappa} \vec{\kappa}$: operates in each source plane

$$\kappa \to \delta: \qquad \kappa(\chi_S) = \frac{3H_0^2 \Omega_M}{2} \int_0^{\chi_S} \frac{\chi(\chi_S - \chi)}{\chi_S} \frac{1 + \delta(\chi)}{a(\chi)} d\chi$$

 $\vec{\kappa} = Q_{\kappa\delta}\vec{\delta}$: operates in each line-of-sight

Final Result:
$$\rightarrow \vec{y} = M \vec{\delta}$$

Linear Mapping

Given a noisy measurement $\vec{\gamma} = M \vec{\delta} + \vec{n_{\gamma}}$ γ , we want to solve for δ :

Best estimator is due to Aitken (1935): $\hat{\delta} = \left(M^T N_{\gamma\gamma}^{-1} M \right)^{-1} M^T N_{\gamma\gamma}^{-1} \vec{\gamma}$

Problem: Noise can obscure the signal by several orders of magnitude!

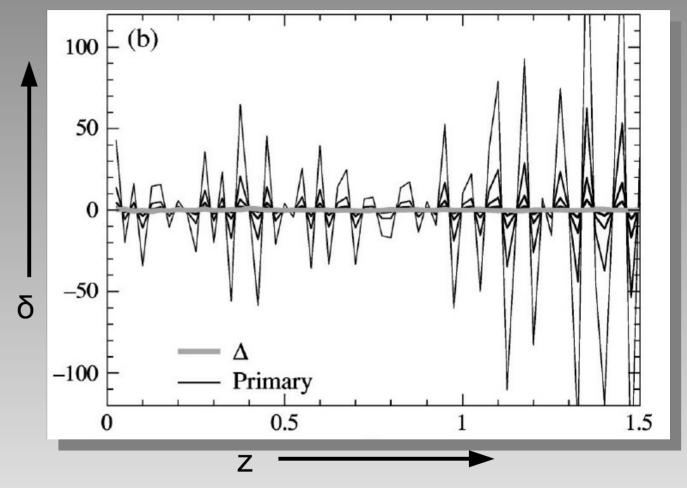
(Hu & Keeton 2002)

The Problem: Shear is too noisy

Hu & Keeton 2002:

Different lines: Factors of 10 in noise

(Note: $\delta < -1$ is unphysical)



Aitken estimator is no good for noisy shear data.

A Solution: Wiener Filtering

Add a penalty to the χ^2 which suppresses large oscillations:

$$\chi^2 \to \chi^2 + H$$

Key results:

- successful in suppressing noise
- leads to a bias and spread in lens redshift
- requires NL power spectrum as input
- requires a relatively slow iterative solution

Hu&Keeton 2002, Simon et al. 2009

Can we do better?

$$\vec{\gamma} = M \vec{\delta} + n_{\gamma} \qquad \hat{\delta} = \left(M^T N_{\gamma\gamma}^{-1} M \right)^{-1} M^T N_{\gamma\gamma}^{-1} \vec{\gamma}$$

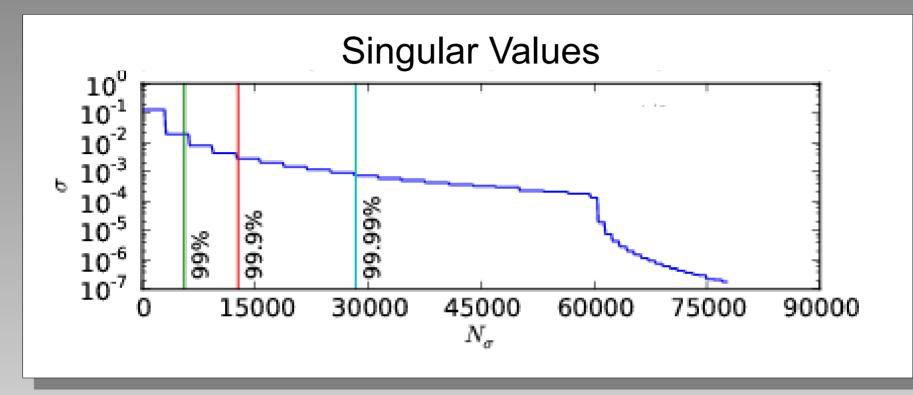
Singular Value Decomposition (SVD) $N_{\gamma\gamma}^{-1/2} M = U \Sigma V^T$ $U^T U = V^T V = I$ $\Sigma = diagonal$

Aitken estimator becomes:

$$\hat{\delta} = V \Sigma^{-1} U^T N_{\gamma\gamma}^{-1/2} \vec{\gamma}$$

Small singular values lead to large noise in δ !

99.99% of variance is in less than 1/3 the SVD!

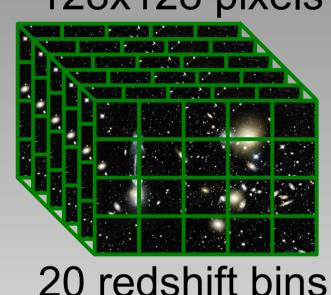


Standard trick:

truncate the small singular values:

$$U \Sigma V^T \to \widetilde{U} \widetilde{\Sigma} \widetilde{V}^T$$

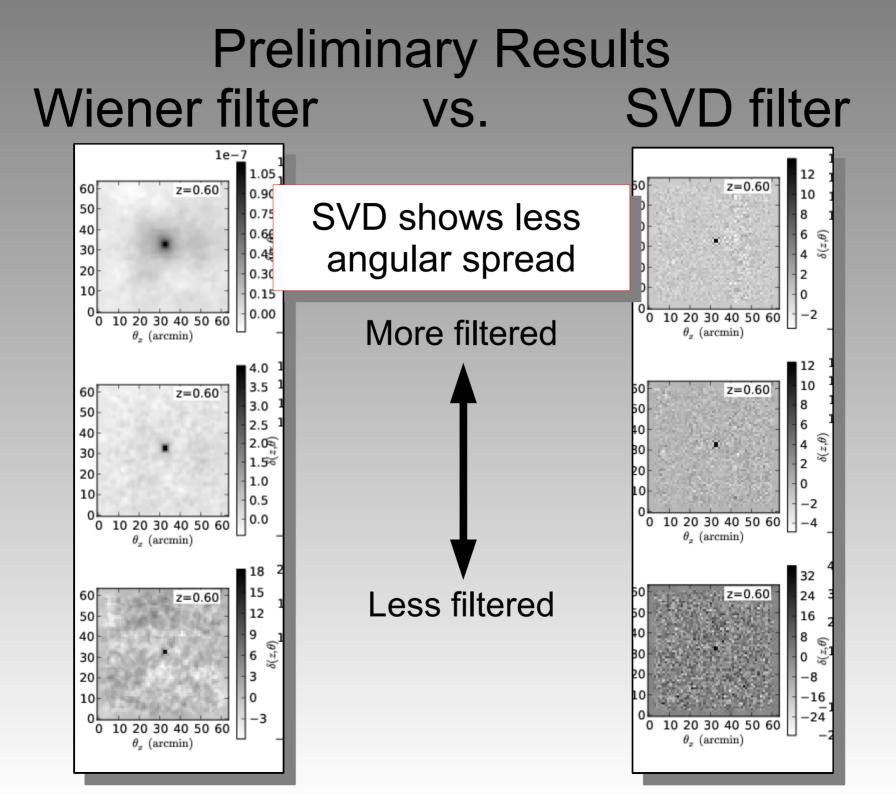
The Challenge... For present-day surveys: 128x128 pixels



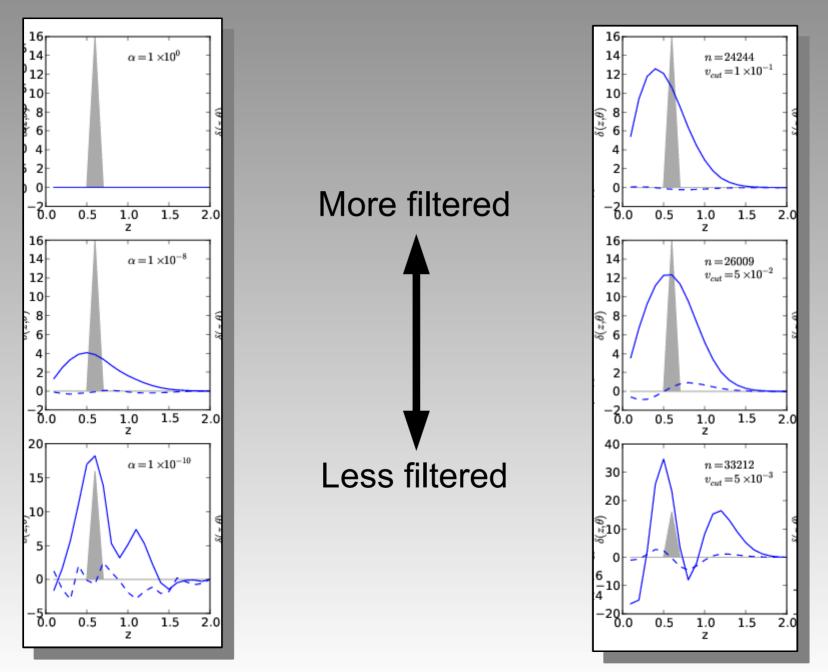
Matrix contains 1.3 x 10¹¹ elements! ~2TB in memory!

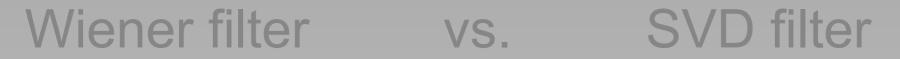
SVD is non-trivial

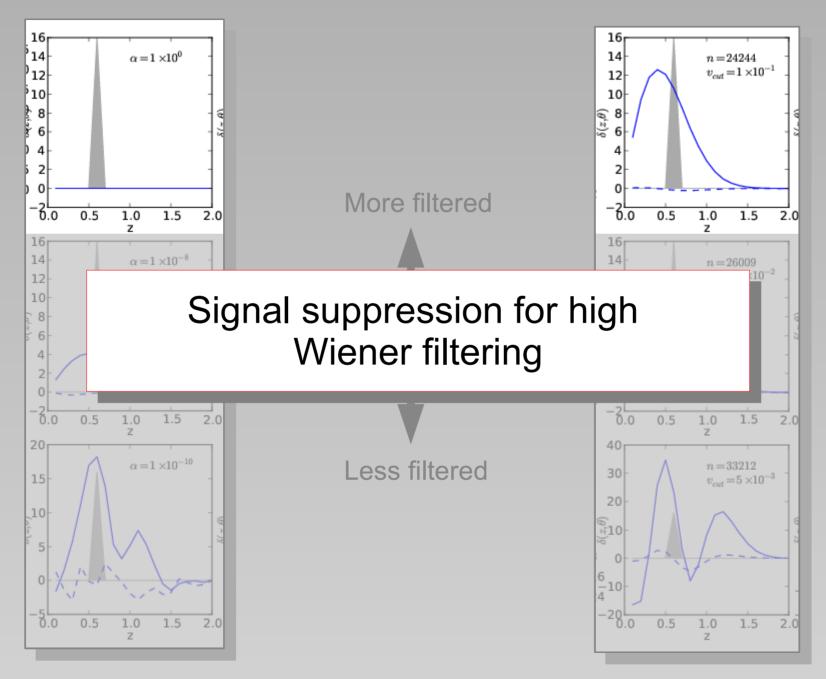
Solution: tensor decomposition, and a few reasonable approximations (details in our upcoming paper)

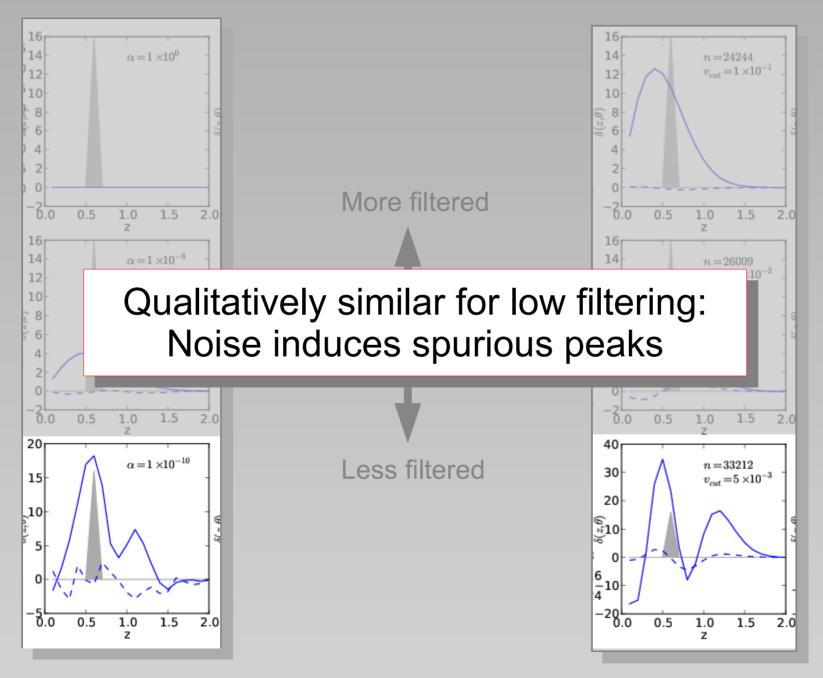


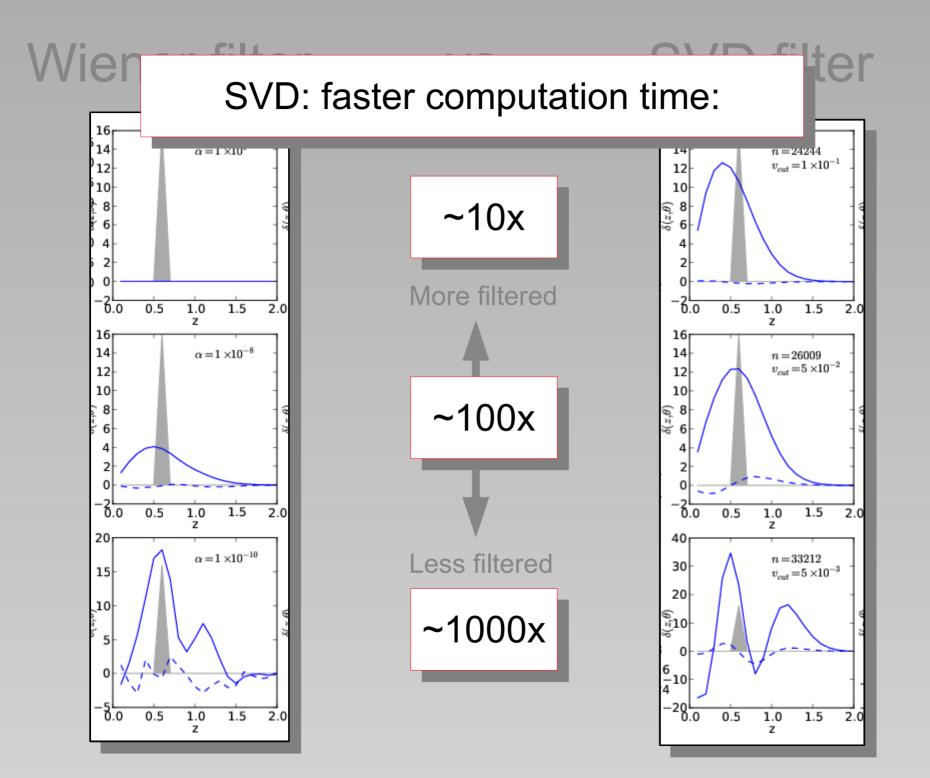
Wiener filter vs. SVD filter

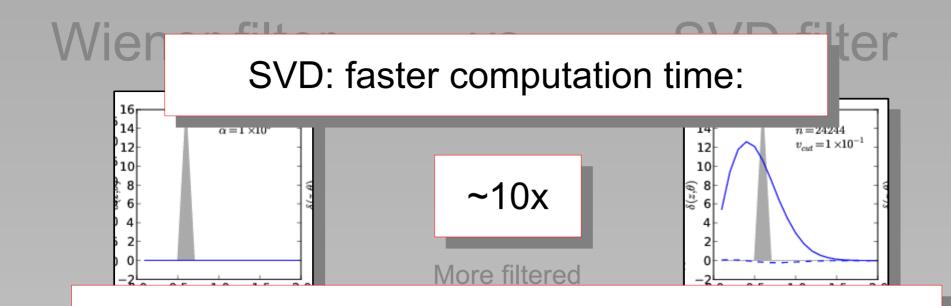




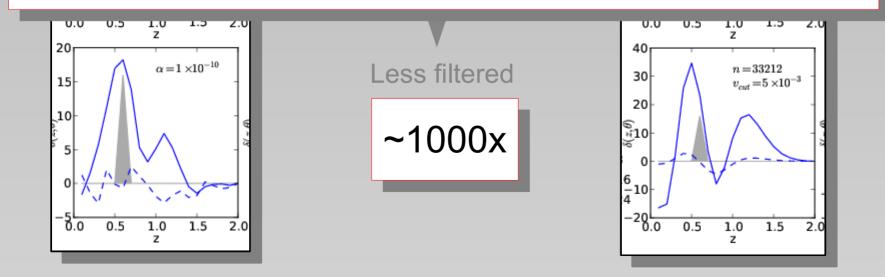




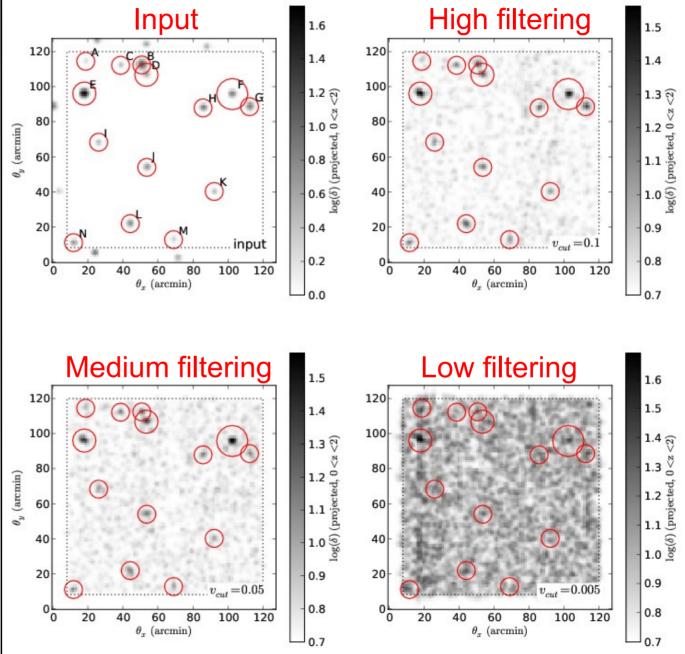




Linear scaling with survey area: SVD method can do 20,000 deg² field (e.g. LSST) in ~2 hours



Angular Resolution and Redshift Bias (SVD filter)



Angular Resolution and Redshift Bias (SVD filter) **High filtering** Input

High filtering introduces a large bias and spread in redshift of the lens

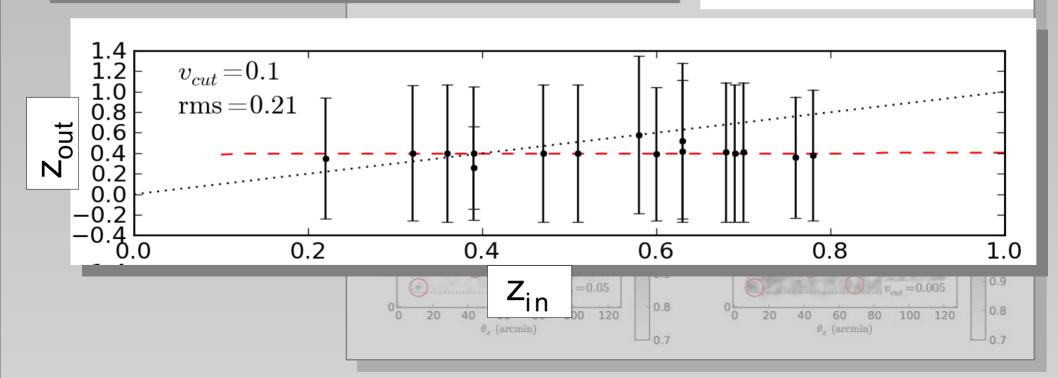
arcmin)

120

100

80

60



1.6

1.4

1.2 🗟

1.0 0

0.8

120

100

80

60

40

20

00

20

40

1.5

1.4

1.3 2

1.2 °

1.1 (project

1.0 (9) 1.0

0.9

0.8

0.7

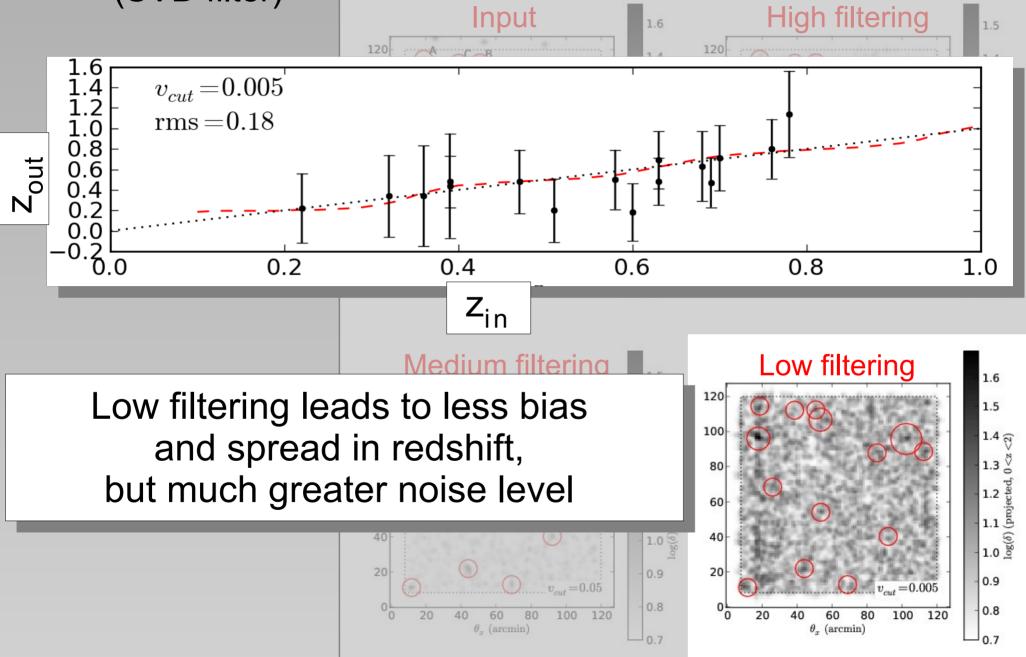
=0.1

100 120

80

60 θ_{-} (arcmin)

Angular Resolution and Redshift Bias (SVD filter)

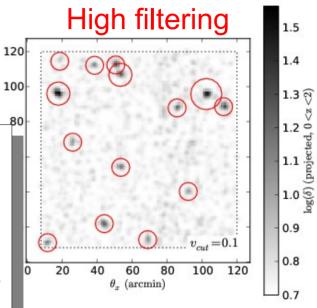


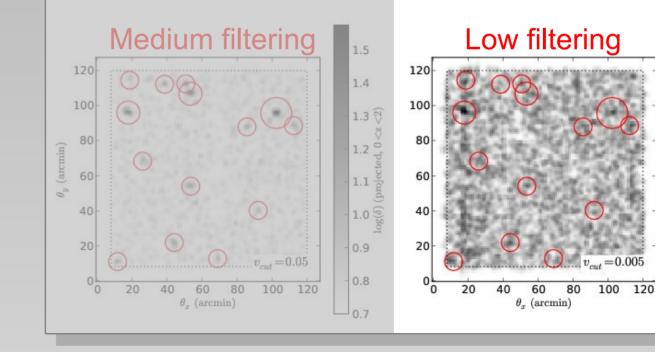
Angular Resolution and Redshift Bias (SVD filter) Input

This suggests a 2-stage process: > Higher filtering to locate halos Lower filtering to determine redshift

120

100

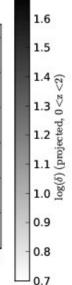




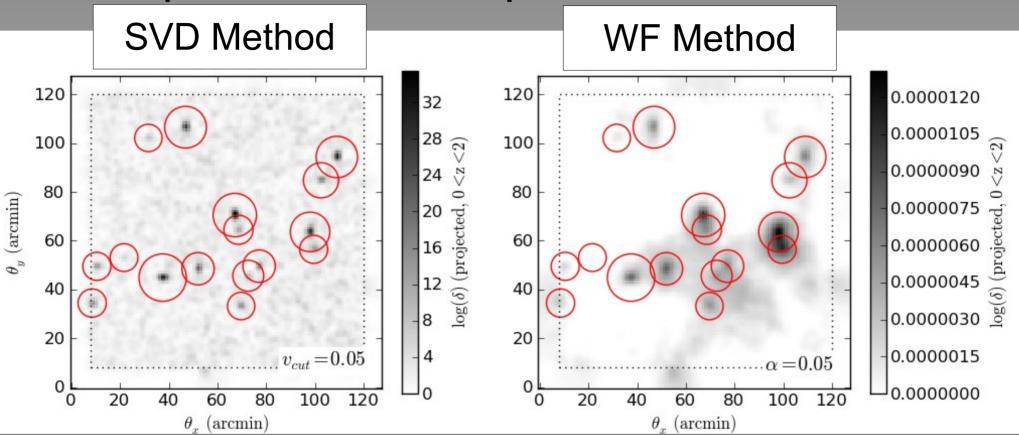
1.6

1.4

1.2 2



Comparison for multiple lenses:



(medium filtering level for each) SVD does better at distinguishing close pairs

Summary & Preliminary Results:

- We've developed a new non-parametric 3D mass-mapping method
- The method improves upon the Wiener filter technique for signal-suppression & angular spread
- Problems with redshift spread & bias are still unresolved – similar to Wiener filtering
- Speeds are 10-1000 times faster than Wiener filtering applicable to future large surveys

Jake VanderPlas

University of Washington

vanderplas@astro.washington.edu