#### To Explore Redshift 5-10 Universe

Maruša Bradač



Nicholas Hall, **Douglas Clowe**, Anthony Gonzalez, Dennis Zaritsky, Christine Jones, Phil Marshall, Tommaso Treu, Douglas Applegate, Peter Schneider

Edinburgh, July 2010

## Cosmic Epochs

#### You wish to be here

**Big Bang** 

Radiation era

~300,000 years: "Dark ages" begin

~400 million years: Stars and nascent galaxies form

~1 billion years: Dark ages end

~9.2 billion years: Sun, Earth, and solar system have formed

~13.7 billion years: Present

Galatiesevolve

# Cosmic Epochs

#### You are here

**Big Bang** 

**Radiation era** 

~300,000 years: "Dark ages" begin

~400 million years: Stars and nascent galaxies form

~1 billion years: Dark ages end

~9.2 billion years: Sun, Earth, and solar system have formed

~13.7 billion years: Present

Galatiesevolve

Observing z>5 Universe Through Gravitational Telescopes

- \* Lensing is fantastic!
- \* Large magnification factors, allows us to get larger number counts (provided the luminosity function is steep)



Edinburgh, July 2010

Observing z>5 Universe Through Gravitational Telescopes

- \* Large areas with observed multiple images much eased identification; no need for often prohibitive spectroscopy
- \* Spectroscopy at z>7
  - → UDF ultra difficult specroscopy
  - → GOODS very difficult spectroscopy
  - → 1E0657-56 difficult spectroscopy
- Magnification maps need to be known to sufficient accuracy to constrain the number counts (and for best cases also individual luminosities)

#### Observing z~7 Universe Through Gravitational Telescopes



#### Pick Ideal Gravitational Telescopes

M.S.C.



Maruša Bradač

Finding Ideal Cluster

Edinburgh, July 2010

Maruša Bradač

## Finding Ideal Cluster



Edinburgh, July 2010

Maruša Bradač

## Focusing your Cosmic Telescope



Edinburgh, July 2010

## Mass (Magnification) Modeling

- \* We combine strong and weak lensing constraints using a parametrisation that allows a high flexibility of the mass models.
- \* Adapt resolution weak lensing at much lower resolution than strong lensing

Bradač et al 2005, Bradač et al 2009

Edinburgh, July 2010

Maruša Bradač

### SW United and 1E0657-56

#### Bradac et al. 2009



Edinburgh, July 2010

#### Lensing vs. Blank Fields

- \* Errors on magnification map:
  - -> Substructure
  - -> Strong lensing multiple image
- \* Image recovery is a good indication on errors (if multiple systems present)
- \* Typical rms per image -> 4"
- \* SWUnited adaptive -> rms per image 1.4"

Maruša Bradač

## Magnification errors



ACS field

1



0.6

0.7

0.8

0.9

0.5

0

0.2

0.3

0.4

0.1

#### Lensing vs. Blank Fields

- \* Errors on individual magnifications can be potentially large, but on average small
- \* Errors on surface change even smaller
  - ->ACS field centered on the main cluster 0.25±0.2
- \* And don't forget the other advantages...

Maruša Bradač

#### z>5 Universe through 1E0657-56

- Deep ACS data: F606W (V , 2340s), F775W (i, 10150s), and F850LP (z, 12700s)
- Search for V and i-band dropouts -> z=5-6 population, compare with blank surveys

-> GOODS (v1): V - 5000s, i - 5000s, z - 10660s (320 arcmin2)

-> HUDF: V - 135ks, i - 347ks, z - 347ks (10 arcmin2)

Maruša Bradač

#### It Works! Galaxies at z=5-6





Z ~ 6 (i-dropouts)

Edinburgh, July 2010

Z ~ 5 (V-dropouts)

Maruša Bradač

#### z>7 Universe through 1E0657-56

- \* Deep ACS data: F606W (V, 2340s), F775W (i, 10150s), and F850LP (z, 12700s)
- \* WFC3 data: F110W (J, 13000s), F160W (H,14000s)

Edinburgh, July 2010



Edinburgh, July 2010

F850LP (ACS) F110W (WFC3) F160W (WFC3)

Hall, MB et al in prep.

Maruša Bradač

### z>7 Universe through 1E0657-56



Maruša Bradač

# z>7 Universe through 1E0657-56



Edinburgh, July 2010

Maruša Bradač

#### z>7 Universe through 1E0657-56



Maruša Bradač

#### z>7 Universe through 1E0657-56



Maruša Bradač

## z~3 Universe: Bright IRAC galaxy

Edinburgh, July 2010

Maruša Bradač

# z~3 Universe: Bright IRAC galaxy





Maruša Bradač

## Dust Bunny – Ordinary, yet exceptional



ACS



IRAC 3.6 $\mu$ m 4.5 $\mu$ m 8 $\mu$ m | $\mu$ | = 50 and 25 z=2.8

Gonzalez, MB et al 2009, 2010

Edinburgh, July 2010

Maruša Bradač

## Dust bunny through WFC3



Edinburgh, July 2010

Maruša Bradač

# Dust bunny through WFC3



Edinburgh, July 2010

Maruša Bradač

## Dust bunny through WFC3



Edinburgh, July 2010

Maruša Bradač

## Dust bunny through WFC3



Edinburgh, July 2010

Maruša Bradač

### Dust Bunny

- Bright in IRAC (3.6μm, 4.5μm, 8μm, and 24μm) and not detected at (3-σ) in optical imaging.
- Gravitational lensing and
  SED fitting both agree: z = 2.8
- Ultra bright submm source (AzTEC - Wilson et al 2008, BLAST - Rye et al. 2009, Herschel - Rex et al. 2009)



Edinburgh, July 2010

## IRS spectrum



Maruša Bradač

Dust Bunny

- \* A low-mass dwarf galaxy
- \* M = 4 ×  $10^{9}(\mu/100)^{-1} M_{\odot}$
- \* The far-infrared thermal emission is star-formation dominated.
- \* The inferred specific star formation rate: SSFR  $\sim 25 40 \text{ Gyr}^{-1}$

### Silver Bullet for High-z Universe

- \* The future is bright (WFC3, JWST) -> magnified by lensing
- \* SW United goes adaptive -> improved accuracy of the image positions - rms/image 4"->1.4" (current limitations - lack of redshifts)
- \* Efficient cosmic telescope
- \* We find results consistent with blank field surveys, despite using much shallower data.
- \* Bouwens et al. 2010d HUDF blank fields: ~ 0.1 dropouts/orbit(zYH)

Using 1E0657-56: ~ 0.7 dropouts/orbit (zJH)

\* Need better statistics, especially at faint end.