# Cosmology with the Shear-Peak Statistics

#### Jörg Dietrich

with Jan Hartlap





#### Dietrich & Hartlap 2010, MNRAS 402, 1049

## Weak Lensing Cluster Cosmology



- Evolution of cluster mass function is cosmological probe.
- Cluster cosmology and cosmic shear are complementary (Takada & Bridle 2007)
- Weak lensing searches for galaxy clusters will always be incomplete.
- Weak lensing searches will always have false positives.

Dietrich et al. (2007)

## **The Peak Statistics**

- The weak lensing peaks caused by LSS are false positives only if one searches for galaxy clusters.
- LSS peaks caused by real mass along the line of sight.
- LSS peaks caused by real structure, matter density fluctuations.
- LSS peaks contain cosmological information.

Problem: Filaments and sheets are not collapsed structures. How do we predict the number of peaks as a function of cosmology?

## **N-body Simulations**

Make many N-body simulations for various cosmological parameters and ray-trace through them.



- 192 N-body simulations in the  $\Omega_{\rm m}$ - $\sigma_8$  plane.
- 166 different cosmologies
  (Ω = 1).
- 35 simulations at the fiducial cosmology (0.27, 0.78).
- Each simulation: 256<sup>3</sup> particles, 200 Mpc box (like GIF).
- ► Big enough to give 10<sup>15</sup> M<sub>☉</sub> halos.

From each simulation: simulate five  $6 \times 6 \text{ deg}^2$  fields. CFHTLS like survey.

## **Peak Finder**

Aperture mass, Map,

$$M_{ap}(\vec{\theta}_0) = \int d^2\theta \, Q(|\vec{\theta} - \vec{\theta}_0|) \gamma_t(\vec{\theta};\vec{\theta}_0) \ , \label{eq:Map}$$

is a matched filter for shear if filter  $\mathbf{Q}(\vartheta)$  follows expected shear profile.



#### Signal-to-Noise Ratio Data Vector

- We used SNR as a proxy for mass.
- Instead of using SNR bins, we take the <u>cumulative</u> SNR distribution.



# With n logarithmically spaced bins: $\vec{S}(\Omega_m,\sigma_8):\mathbb{R}^2\to\mathbb{R}^n$



## **Constraints from Tomographic Peaks**

- Blue contours are derived using the SNR distribution of peaks.
- Green contours are constraints from counting peaks per redshift bin.
- Red/cyan/blue contours are the combination of both methods.
- Cannot use full N(σ, z) because covariance is limited.
- Used fitting function to interpolate between simulation points.

# **Combined Covariance**



- Cosmic shear and peak counts both measure the same density field.
- Significant cross-covariance between both methods expected.
- Cosmic shear tomography with 2 redshift bins and 10 spatial bins from 30" to 6 deg.

## **Combined Constraints**



- Both methods have very similar degeneracies.
- The peak statistics give competetive constraints.
- The combination of both methods further improves constraints.
- This is probably due to the inclusion of non-Gaussian fluctuations.

| Туре            | Figure of Merit |
|-----------------|-----------------|
| Cosmic shear    | 71              |
| Peak statistics | 123             |
| Combined        | 173             |

# Where is the Information?



- $\Rightarrow$  Most information in the low SNR regime.
  - Very few real "clusters" in this regime.
  - Projections of low mass objects carry a lot of information.

FoM

48

34

7

48

 $\mathbf{n}_{\rm bin}$ 

5

5

5

10

 $\sigma_{\min}$ 

3.2

3.2

4.0

3.2

#### Summary

- Peak statistics can constrain Ω<sub>m</sub>, σ<sub>8</sub> with projected peaks containing cosmological information.
- Peak tomography does much better than M<sub>ap</sub>.
- Peak tomography gives constraints which are competetive with cosmic shear tomography.
- The combination of both improves constraints.
- Application to surveys challenging at the moment. Emulators may be a solution.
- What about other parameters, Dark Energy?