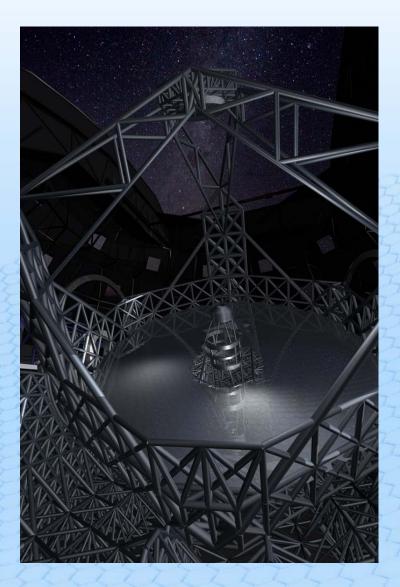

The World's Biggest Eye on the Sky The European Extremely Large Telescope

Jochen Liske **E-ELT Science Office** E-ELT VLT

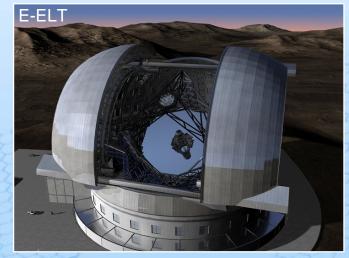
Background

- In 2004 ESO Council resolved that:
 - ESO's highest priority strategic goal must be the European retention of astronomical leadership and excellence into the era of Extremely Large Telescopes...
 - the construction of an Extremely Large Telescope on a competitive time scale will be addressed by radical strategic planning ... for fast implementation.


The story so far...

- ESO design activities on OWL concluded with design review at the end of 2005 with the following recommendations:
 - ELT activities to continue to phase B
 - 100-m feasible but risk to cost and schedule high
 - Risk mitigation recommended in the next phase of design, avoiding double segmentation, limiting complexity of functions and reducing schedule risk.
- 1st half of 2006 community wide consultations in 5 working groups with over 100 scientists and engineers directly contributing.
 - Site
 - Adaptive optics
 - Instrumentation
 - Telescope
 - Science
- 2nd half of 2006, formation of the ELT project office at ESO and consolidation of basic designs.
 - Baseline telescope design proposal presented to the ESO committees and community in Marseille (December 2006).
 - ESO Council gave a unanimous go-ahead (and 57.2 M€) to the project office to advance to phase B with a goal to present a construction proposal in 2010.

E-ELT: General Characteristics


- Largest optical-infrared telescope in the World: 42m
- Adaptive optics assisted telescope
- Segmented primary mirror
- Active optics to maintain collimation and mirror figure
- Diffraction limited performance
- Fast instrument changes
- Wide field of view: 10 arcmin
- VLT level of efficiency in operations
- Mid-latitude site

The E-ELT compared to ELTs

Largest

42 m ~1200m² 4.9 mas

(JWST: 6.5 m) (JWST: 25 m²) (JWST: 34 mas)

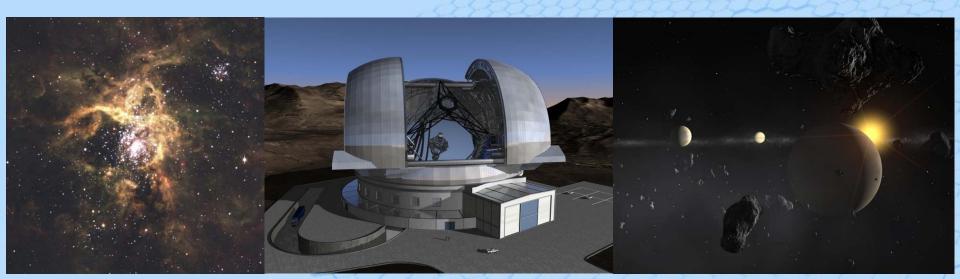
Larger

30 m ~600 m² 6.9 mas

Large

Diameter: Collecting area: Diffraction limit at 1µm:

24 m ~400 m² 8.6 mas


Current Status in a Nutshell

Current Status in a Nutshell

- Top priority of European ground-based astronomy (on Astronet and ESFRI lists).
- Project (led by ESO) is in the detailed design phase (Dec 2006 Dec 2010), with a total budget of 62 M€ from ESO + 35 M€ from EC Framework Programmes.
- Supported by community activities (FP7 activities).
- 8 instrument + 2 AO module concept studies in progress.
- Site not yet selected.
- Construction planned to begin in 2011. First light 7 years later: 2018
- Construction cost: ~950 M€ (incl. ~90 M€ for instrumentation)

The Science

Contemporary science:

Exo-planets: radial velocity detections (few cm/s), direct imaging (contrast of 10⁻⁹), proto-planetary disks (resolution of <1 AU),

Fundamental physics: GR in the strong field limit in the centre of the Milky Way (astrometry at 50-100 µas/year), variation of fundamental constants, expansion history of the universe (cm/s precision over a decade), Resolved stellar populations: beyond the Local Group The physics of high redshift galaxies and many more...

Synergies with other top facilities: ALMA (see www.eso.org/almaelt2009), JWST (see workshop April 13-19, 2010), LSST and other survey telescopes, SKA (see workshop May 10-14, 2010), ...

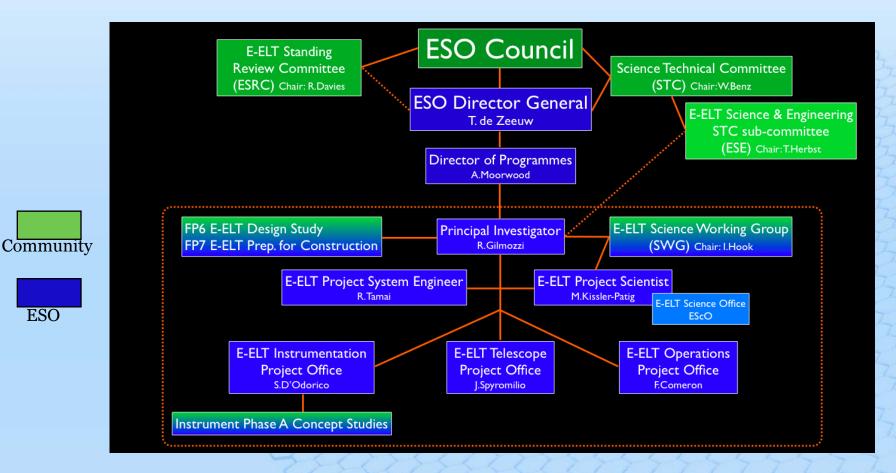
Discoveries:

opening new parameter space in spatial resolution and sensitivity, ...

Science Case Development

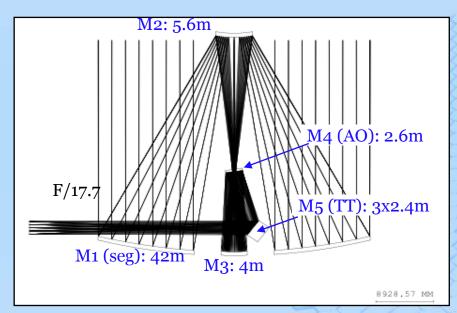
E-ELT Science Working Group

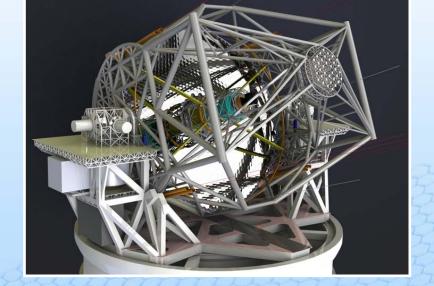
Isobel Hook (Chair) Arne Ardeberg Andrea Cimatti Fernando Comeron Jose Espinosa Sofia Feltzing Wolfram Freudling Raffaele Gratton Hans-Ulli Kaeufl Matt Lehnert Christophe Lovis Piero Madau Mark McCaughrean Michael Merrifield Rafael Rebolo Piero Rosati Eline Tolstoy Hans Zinnecker With thanks to previous members: Willy Benz **Robert Fosbury** Marijn Franx Vanessa Hill Bruno Leibundgut Markus Kissler-Patig **Didier** Queloz Peter Shaver Stephane Udry


Dec 2005: ESO SWG formed Science case re-evaluated for 30-60m (April 2006) ESO SWG merged with OPTICON activity

Project Organisation

Project led by ESO on behalf on its 14 member states. Strong involvement of member state industries and scientific communities.


The Telescope


Nasmyth telescope with a segmented primary mirror of 42 m diameter.

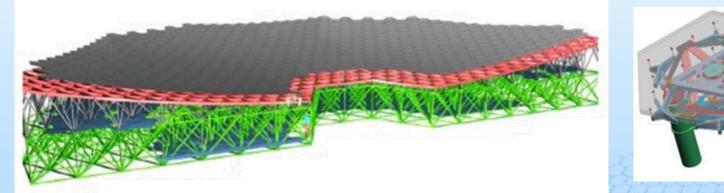
Nearly 5000 tons of moving structure.

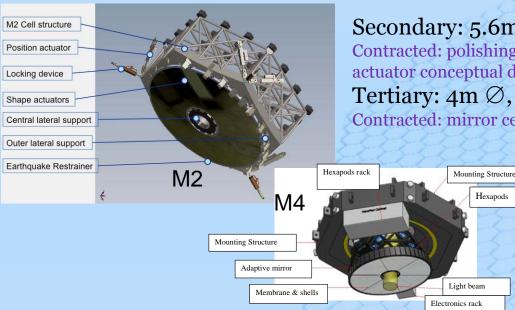
Two instrument platforms of the size of tennis courts can host 5 instruments each.

Six laser guide stars (provision for eight), launched from the side.

Novel 5 mirror design to include adaptive optics in the telescope

Classical 3-mirror anastigmat + 2 flat fold mirrors [M4,M5]

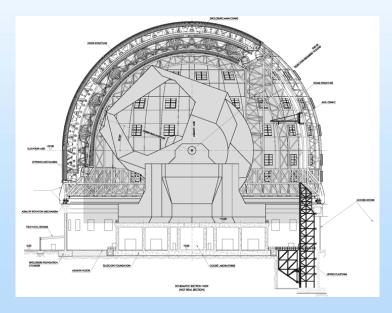

Field of view (radius)	RMS Wavefront Error (nm)	Strehl ratio at wavelength 500 nm	Strehl ratio at wavelength 2000 nm
axis	La La La	1.00	1.00
1 arc min	1.141.1	1.00	1.00
2 arc min	/ /5 / /	1.00	1.00
3 arc min	7	0.99	1.00
4 arc min	9	0.99	7 1.00
5 arc min	13	0.97	1.00
4 arc min	9 13	0.99	7 1.00
o mas	$(\cdot)(\cdot)$	$) (\cdot) ($	•)(•


The Mirrors

Primary mirror: 42m Ø, 984 hexagonal segments of 1.45 m tip-to-tip: 1200 m²

Contracted: 2 x seven segments, prototype segment support structures, edge-sensors, prototype position actuators, ...

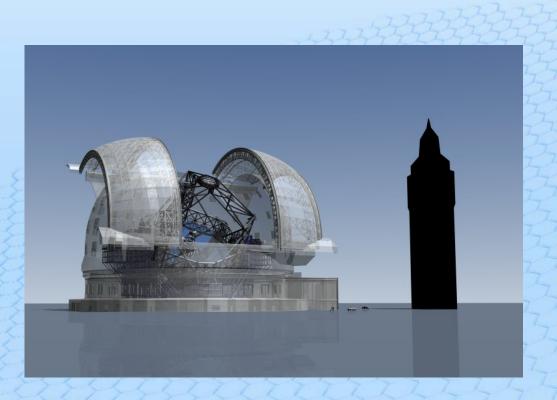
Secondary: 5.6m \emptyset , 156 axial supports Contracted: polishing study, mirror cell design, actuator conceptual design, ... Tertiary: $4m \emptyset$, controls f-ratio Contracted: mirror cell design, ...


Hexapods

M4: 2.6m \oslash flat, adaptive with 6000 to 8000 actuators

Contracted: two scale-1 functional prototypes M₅: 3x2.4m, flat, tip-tilt Contracted: scale-1 electromechanical unit

The Dome


Close to 4000 tons of steel.

Fully air-conditioned and wind shielded.

Equipped with several heavy duty cranes and a lifting platform for instruments.

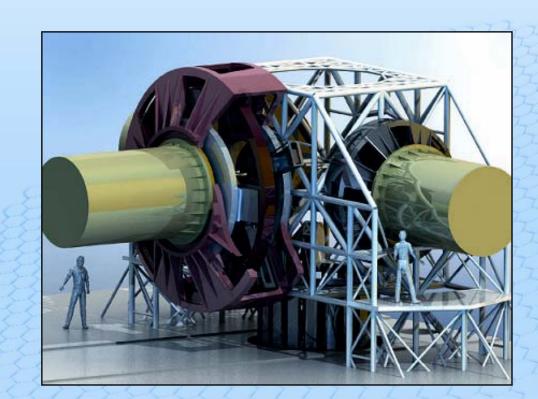
The E-ELT dome: base of 100 m diameter, and 80 m high.

The size of a football stadium.

Instrumentation

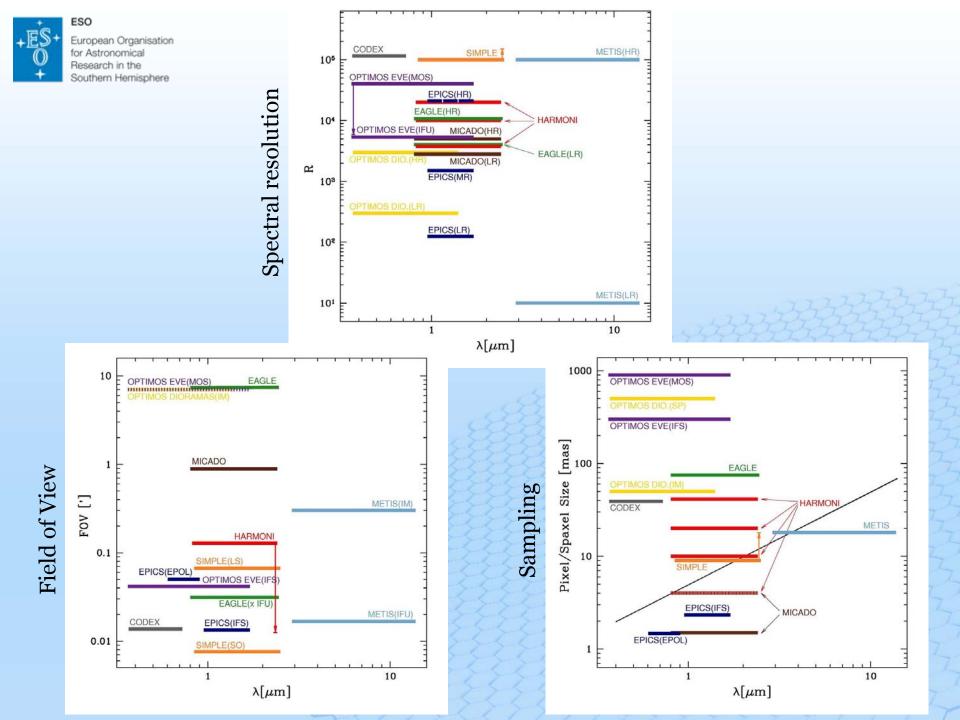
Instrument and AO modules Study Plan (April 2007):

- Goal: Definition of a *first generation instrument set*, to be included in the E-ELT construction proposal in 2010.
- Scope:
 - Carry-out a suitable number of instrument studies to verify that instruments can be built at an affordable cost and that they properly address the scientific goals of highest priority.
 - Work with the ESO community in studying 8 instruments + 2 AO modules and to prepare for construction.
 - Work with telescope and operation POs to identify and define interfaces with the other subsystems and the observatory infrastructure.
- Budget: 2.3 M€(2007-2010)



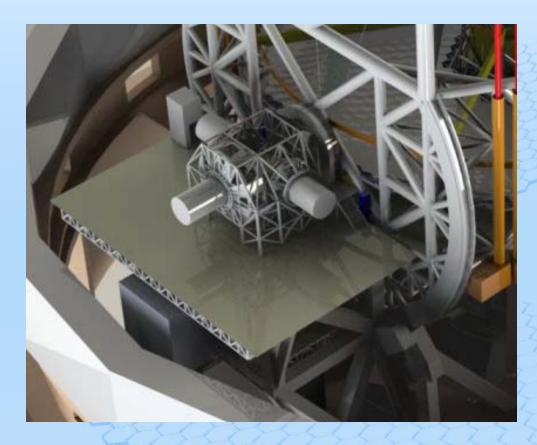
The Instruments

• All 8 instrument concept (phase A) studies, and 2 post-focal adaptive optics modules studies are underway and will run until early 2010.


• Scope:

- Detail the science case.
- Finalize the instrument requirements.
- Develop an instrument concept including cost and construction schedule.

CODEX High-resolution, high-stability optical spectrograph		
EAGLE	Wide-field NIR multi-IFU	
EPICS	Extreme AO planet imager and spectrograph	
HARMONI	Single field NIR wide-band IFU	
METIS	MIR imager and spectrograph	
MICADO	Diffraction limited NIR imager	
OPTIMOS	Wide-field optical MOS	
SIMPLE	High-resolution NIR spectrograph	
ATLAS	LTAO module	
MAORY	MOAO module	



The Instruments

In principle, the telescope can host up to 10 instruments (including two gravity invariant focal stations and a Coude lab).

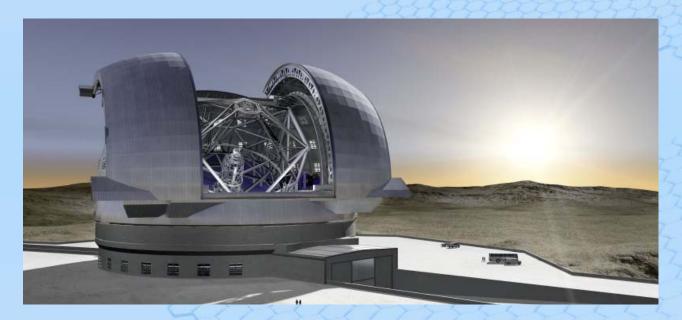
Two to three first light instruments are foreseen and will be selected by mid-2010.

Atacama

The Site(s)

Site decision expected by the end of 2009.

Several sites in Chile, Morocco, the Canary Islands, Argentina, Mexico, ... have been intensively tested.


Selection criteria: impact on science, outstanding atmosphere, but also construction and operations logistics (roads, water, electricity, nearby cities, ...).

Morocco

The year ahead

- End of 2009: Site decision
- Early 2010: Decision on first-light instruments
- Mid 2010: Construction Proposal submitted to ESO committees
- End 2010: Construction Proposal submitted to Council

More information?

The public web pages:

http://www.eso.org/public/astronomy/projects/e-elt.html

The science users web pages: http://www.eso.org/sci/facilities/eelt/

Brochures, Posters, etc: http://www.eso.org/public/outreach/products/publ/brochures/index.ht ml

Gallery: http://www.eso.org/gallery/v/ESOPIA/EELT

Thank you