

Stellar Populations with the E-ELT

Phase A Instrument Studies & UK Involvement

Chris Evans

Thanks to: Niranjan Thatte & Gavin Dalton

Cambridge, Sept 2009

Resolved Stellar Populations in the Local Group

M31

Resolved Stellar Populations in the Local Group

M31

Richardson et al. (2008)

Resolved Stellar Populations in the Local Group

KECK-DEIMOS in M31 Chapman et al. (2006)

Richardson et al. (2008)

The ELT era

Resolved Stellar Populations in the Local Volume

ELTs will unlock a huge range of new targets, including:

- NGC 3109 & Sextans A (1.3 Mpc)
- Spiral-dominated Sculptor Group (2-4 Mpc)
- M83/NGC5128 grouping (4-5 Mpc)
- NGC3379 (11 Mpc)
- Virgo Cluster galaxies (16-17 Mpc)

E-ELT Phase A Instrumentation Studies

- EAGLE Multi-IFU, near-IR spectrometer
- HARMONI Diffraction-limited, near-IR & optical IFU
- **OPTIMOS** Seeing-limited/GLAO high-multiplex spectrograph
- EPICS XAO imager/spectro-polarimeter for exo-planets
- METIS Mid-IR (5-30µm) imager & spectrometer
- CODEX Ultra-high-resolution optical spectrograph Science lead: Martin Haehnelt (Cambridge)
- MICADO Near-IR, high-resolution imaging camera
- SIMPLE Near-IR, high-resolution spectrograph

AO-relays MAORY (MCAO relay) & ATLAS (LTAO relay)

JK Partners

MICADO

- Multi-AO Imaging Camera for Deep Observations
- PI: Reinhard Genzel, MPE
- JHK imager

Primary Imaging Field

- 53" across, 3mas pixels
- high throughput
- 4x4 HAWAII 4RG detectors
- ~20 filter slots

Xmas Tree Arm

- 1.5mas & 4mas pixels
- imaging & spectroscopy

EAGLE

- Multi-IFU, AO-corrected, near-IR spectrograph
- PI: Jean-Gabriel Cuby (Marseille)

Evans et al. arXiv: 0909.1748

EAGLE Baseline Design

• Mounted at gravity-invariant Nasmyth focus

Parameter	Specification
Patrol Field	eqv. 7 arcmin diameter
Science subfield (IFU FOV)	1.65 x 1.65 arcsec
Multiplex	20
Spatial Resolution	30% EE in 75mas (H-band)
Spectral resolving power	4,000 & 10,000
Wavelength range	0.8-2.5 µm

EAGLE AO

Multi-Object Adaptive Optics (MOAO)

Multi-Object AO

© E.Marchetti / ESO / 2005

CANARY: 2010-2012:

- Demonstrate MOAO in EAGLE config.
- Improve real-time control techniques
- Develop calibration techniques

EAGLE Point-source Performance

- Seeing = 0.65'', $t_{exp} = 20x1800s$, R = 10,000
- Two NGS configurations

CaT (I band)

CO	bandhead	(K	band)

I _{VEGA}	S/N [PSF1]	S/N [PSF2]
22.5	56	48
23.5	28	24
24.5	13	10

K _{VEGA}	S/N [PSF1]	S/N [PSF2]
22.5	53	42
23.5	23	20
24.5	11	10

4 mags deeper than FLAMES LR08 observations Can also operate with just telescope GLAO

HARMONI

- Near-IR & visible integral-field spectrograph
- PI: Niranjan Thatte (Oxford)
- End of Phase A: December 2009

HARMONI Specs

- Nasmyth focus, behind ATLAS LTAO module
 - Can also run in other AO modes: noAO/GLAO, SCAO

Parameter	Specification	
Field-of-view	Up to 5 x 10 arcsec	
Spatial Resolution	Four scales: 4, 10, 20 & 40 mas/spaxel	
Spectral resolving power	4,000, 10,000 & 20,000	
Wayalangth range	Optical (2 spectrographs): 0.5-0.82 µm	
wavelength range	Near-IR (8 spectrographs): 0.82-2.4 µm	

HARMONI Spatial Sampling

HARMONI Point-source Performance

- Seeing = 0.8'', $t_{exp} = 5$ hrs, S/N = 5, LTAO
- R and H bands as representative of optical/near-IR (FWHM ~ 200 & 8 mas, respectively)

	4 mas		20 mas	
Spectral Resolution	R _{AB}	H _{AB}	R _{AB}	H _{AB}
4,000	24.2	27.1	25.1	27.3
10,000	23.2	26.4	24.4	26.8
20,000	22.5	25.7	23.7	26.4

In modest conditions (or without AO) can still exploit the E-ELT for factor of 25 in speed in the red optical cf. VLT-MUSE

OPTIMOS-EVE

- Two parallel studies for a large multiplex MOS
- OPTIMOS-EVE: Francois Hammer & Gavin Dalton
- OPTIMOS-DIORAMAS: Olivier Le Fevre
- End of Phase A: Feb 2010

OPTIMOS Specs

Parameter	Specification
Patrol Field	7 arcmin
Multiplex	300 point sources
Deployable IFUs	Up to 6 x 12 arcsec
Spatial Resolution	Seeing-limited/GLAO
Spectral resolving power	5,000 & 40,000
Wavelength range	Optical (B) thru' to H

Stellar Populations with the E-ELT

• A range of capabilities for stellar pops. programmes:

Summary

- First generation suite to be decided in the coming year
- Huge potential for spectroscopy of stellar populations!

Phase A Studies: Field-of-view

Phase A Studies: Spatial Sampling

Phase A Studies: Spectral Resolution

