Current and Future Observations of Gas Disks

> Jonathan Williams Institute for Astronomy University of Hawaii

A very broad area for a very short talk... apologies if I miss your favorite result!

Circumstellar disks are...

- Ubiquitous (at least for cool stars)
- Necessary to conserve angular momentum and allow a star to grow
- Sites of planet formation
- Short-lived and evolve rapidly
- Small, low mass, chemically complex, and mostly cold

Dusty disk evolution

Hillenbrand 2005

Dust is not enough!

- Gas provides 99% of the initial disk mass and most of the SS planetary mass
 - disk stability and mode of planet formation
 - timescale for planet formation
 - planet migration
- Gas largely dictates disk heating, cooling, chemistry
- Gas drag affects dust dynamics

Dust and Gas Structures

Dullemond et al. 2005 (image courtesy of Inga Kamp)

Temperature structure

Spectral lines show the gas at the same *approximate* radius

The inner disk: CO ro-vibrational lines

Boogert, Hogerheijde, & Blake 2002

The inner disk: UV excited lines

Brittain et al.

Inner gas radius

Carr IAU talk

The terrestrial zone: mid-infrared observations with Spitzer

Gorti & Hollenbach 2004; Pascucci et al. 2006, 2007

The terrestrial zone: mid-infrared observations with Spitzer

Lahuis et al. 2007

See Pascucci talk vvaler and organic molecules

Infrared Water Emission From Protoplanetary Disk Spitzer Space Telescope • IRS NASA / JPLCaltach / D. Watson (Univ. of Rochester) asc2007-XX

Disks are full of water! Organic molecule abundances in AA Tau > star forming cores

Watson et al. 2007; Carr & Najita 2008; Salyk et al. 2008

Millimeter lines: the cold outer reservoir Young disks

- H₂ has no dipole moment and is undetectable in cold gas
- CO rotational lines detected in ~100 disks
- High spatial and spectral resolution allow PMS stellar masses to be measured
- Photodissociation and depletion greatly affect abundances (and make it difficult to measure gas mass accurately)

Millimeter lines: the cold outer reservoir Old disks

Disk chemistry

Detection of the CO "frost line"?

Qi PhD thesis 2000

Disk chemistry: D/H ratio

Disk chemistry: D/H ratio

First resolved D/H abundance profile across a disk!

Future observations

Herschel

 λ =60-670 μ m 3.5m, space

SOFIA

 λ =1-600 μ m 2.7m, airborne

ALMA

 λ =300-3000 μ m 54x12m + 12x7m

JWST

 λ =0.6-28 μ m 6.5m, space

Super-Kecks λ =0.5-20 μ m 30+m

Future observations

Figure adapted from Becklin

JWST and Super-Kecks

Diagnosing terrestrial planet forming radii

→ inner disk CO, H_2O , organics

➔ spectrally resolved profiles and potential characterization of dynamical gaps

Figure adapted from Najita

Opening up the far-infrared with Herschel and SOFIA

Creech-Eakman et al. 2002

- First large scale survey of gas with mass sensitivity comparable to dust observations
- 400 hours to observe 250 disks with ages 1-30 Myr

Atacama Large Millimeter Array

Diagnosing the cold disk (outer radii + midplane)

- ~AU, km/s resolution
- Very high sensitivity over wide wavelength range: can select different T,p, chemical properties

• Zoomable

Atacama Large Millimeter Array

Direct imaging of giant proto-planets!

Under construction and on schedule for early science in fall 2010 with full operations (66 antennas) starting late 2012

What might we expect?

- The gas depletion timescale
- Improved understanding of
 - structure (radial and vertical)
 - dynamics (turbulence, transport)
 - chemistry (origin of the Earth's H_2O)
 - evolution
- Signatures of planets
 - instabilities, tidal gaps, gaseous debris*, direct detection of proto-planets

* See Roberge talk

• The unexpected...