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What is the role of thermo-chemical disk models?

• thermo-chemical models help to understand processing
and the history of the early Solar System

• observations in conjunction with protoplanetary disk models
can be used to trace the location of the gas and its
physical properties (density, temperature)

• thermo-chemical disk models put constraints on gas evolution
in protoplanetary disks and thus planet formation models
(core accretion vs gravitational instabilities)

Protoplanetary Protoplanetary DisksDisks & Planet Formation& Planet Formation
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• Astrochemistry and protoplanetary disk models
I. UV irradiation
II. X-rays
III. Dust evolution
IV. Cold gas chemistry
V. Ices
VI. Mixing

• Astrochemistry and thermal models
I. Gas energy balance
II. Disk structure
III. Gas dispersal
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UV irradiationUV irradiation

color of stellar radiation field differs from IS UV

OVI emissions lines

[Spaans et al. 1994, Kamp & Sammar 2004]

H2,CO photodissociation
C ionisation
HCN photodissociation

IS UV radiation field



surface layersurface layer photochemistry
intermediate layerintermediate layer neutral & ion molecule chemistry

disk disk midplanemidplane gas-grain chemistry
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[Aikawa & Herbst 1999, Willacy & Langer 2000, 
van Zadelhoff et al. 2003, Semenov et al. 2004,
Kamp & Dullemond 2004, Jonkheid et al. 2004,
Nomura & Millar 2005]
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Gas phase chemistryGas phase chemistry

[Kamp & Dullemond 2004]
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• X-rays enhance the ionization fraction of the disk surface

• many molecules have higher abundances due to efficient 
ion-molecule chemistry (e.g. HCN)

• LX/LUV determines the chemical timescales (pure X-ray
chemistry takes a factor 100 longer)

[Glassgold et al. 1997, 2004, Aikawa & Herbst 1999, Nomura et al. 2007, Agundez et al 2008]

LX = 1031 erg s-1 no X-rays

Effects of XEffects of X--raysrays

intermediate layer

intermediate layer

r=700 AU, z=220 AU



How does mixing affect the chemistry?How does mixing affect the chemistry?

• Mixing has only minor
effects on the
layered disk structure
in the regions > 10 AU

• Mixing affects the
vertical column densities
of many molecules.

[Ilgner et al 2004, Semenov et al. 2005, Willacy et al. 2006, Ilgner & Nelson 2006, 2008]

• Mixing can enhance the
ionization degree in the
dead-zone (r<10 AU)

dead zone
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Gas energy balanceGas energy balance

Heating Cooling

Photoelectric heating (grains/PAH)

C ionisation

Cosmic rays

Line pumping by UV/optical/IR 
background radiation

(X-ray heating)

Collisional de-excitation of H2*

H2 formation/photodissociation

Fine structure line cooling [OI], [CI], 
[CII]

CO ro-vibrational line cooling

H2O rotational line cooling

H2 quadrupole line cooling

Semi-forbidden [SiII], [FeII], [SII]

Lyα, [OI 6300]

Gas-dust collisions Gas-dust collisions

Γ = Λ



surface layer
UV

X-rays
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• Gas and dust temperature are not coupled in the surface

• X-rays dominate in the inner disk depending on LX/LUV

• Transition to molecular species occurs before the disk becomes
optically thick.

[Kamp & Dullemond 2004, Jonkheid et al. 2004, Nomura et al. 2007]
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• X-rays dominate in the inner disk depending on LX/LUV

• Transition to molecular species occurs before the disk becomes
optically thick.
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Gas energy balanceGas energy balance

z/r



Disk structureDisk structure

Teff, Rstar, Mstar, Mdisk

continuum radiative transfer Tdust

Heating-/cooling-
Balance (Tgas)

Chemistry

Sound speed

Hydrostatic Equilibrium (1+1D)

Model (r,z)
ρgas, Tgas, εi(species)

ρdust, Tdust

Converged?

[Gorti & Hollenbach 2004, Nomura & Millar 2005, Woitke, Kamp & Thi in preparation]



Disk structureDisk structure

[Woitke, Kamp & Thi in preparation]

• vertical disk structure is set by Tgas

• surface layers are more flaring than in Tgas=Tdust models



Future work:Future work:

• realistic dust evolution (growth and settling) in thermo-
chemical modeling

• realistic gas opacities for the disk energy balance (inner disk)

• ice formation and desorption, surface chemistry (outer disk)

• radial and vertical mixing (if indicated by observations)

• Observations, observations, observations to constrain the
models !



Effect of dust evolutionEffect of dust evolution
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• Dust settling lowers the gas temperature in the surface (less 
photoelectric heating)

• Grain growth lowers the gas
temperature in the surface but
warms up the intermediate layers

[Aikawa & Nomura 2006, Jonkheid et al. 2007]

dust settlingdisk dispersal

Mgas/Mdust=10-5

Mgas/Mdust=10-2

Mgas=10-1 M

Mgas=10-4



SummarySummary
Gas chemistry

[Dullemond, Hollenbach, Kamp, D’Alessio 2007]

layered chemical and temperature structure:

hot atomic surface
warm intermediate layer
cold disk midplane

Gas temperature



Thanks !Thanks !

Photo: ESA



Conclusions:Conclusions:
• Chemistry of outer protoplanetary disks driven by irradiation

photochemistry (surface), X-ray chemistry, CR ionization

• Chemistry of inner protoplanetary disks driven also by 
dynamics accretion flows, turbulent mixing and diffusion 

• Chemical signatures can get reset in the disk stage 
(alternative: pristine from molecular clouds/dark cold cores)

• SOFIA, Herschel and ALMA will facilitate the detection of 
gas/ice in transition phase disks and spatially resolve them

comparison with Solar System chemistry

• VLT/VISIR, ISAAC, CRIRES probe the inner disk material
gas dispersal and planet formation



Gas phase chemistryGas phase chemistry

[Thi et al. 2004]

TW Hya    10+10
-7 Myr

• CN and HCO+ indicate UV irradiation

• origin in warm intermediate disk
layer (ion-molecule chemistry)

• OH from inner disk (1-2 AU, T~750 K) 
indicates UV/NIR irradiation

[Manddell et al. 2008]



[Qi et al. 2007]

TW Hya  10+10
-7 Myr • X-rays affect molecular line emission,

especially line ratios (e.g. CO, H2)

and also fine structure lines originating
from the inner disk (r<25 AU) such
as [NeII], [OI]

[Qi et al. 2006, Nomura et al. 2007, Meijerink et al. 2008]

Effects of XEffects of X--raysrays

X-rays
no X-rays T Tauri star, no UV



• X-rays can efficiently heat
the gas in the disk surface

[Glassgold et al. 2004 , Kamp et al. 2005, 
Nomura et al. 2007]

“young” AU Mic no X-rays
in a 0.01 M disk around an M star

T Tauri star

Effects of XEffects of X--raysrays



H3
+ is formed by cosmic rays (UV and X-rays do not penetrate deep)

H3
+ +  HD  -->  H2D+ +  H2

H2D+ +  HD  -->  HD2
+ +  H2 

HD2
+ +  HD  -->  D3

+ +  H2

• D/H in molecules is higher
than the elemental D/H
ratio in the ISM

• Destruction via grain
surface recombination 
and reactions with CO, N2

• Deuteration increases with
distance from the star

[Aikawa & Herbst 1999, 2001,
Ceccarelli & Dominik 2005, Willacy 2007]

intermediate layer

intermediate layer

midplane
midplane

Deuterium ChemistryDeuterium Chemistry



Deuterium ChemistryDeuterium Chemistry

• D/H ratio ~ 0.017-0.035

• higher than ISM, but similar to dark cold cores and comets

• D/H ratio reset in protoplanetary disks

[van Dishoeck 2003, Thi et al. 2004, Qi et al. 2008]
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Cold GasCold Gas--Grain ChemistryGrain Chemistry

[Aikawa & Herbst 1999, Bockelee-Morvan et al. 2000, Rodgers & Charnley 2002]

• Striking similarity
between comets and ISM

• Comets form in the outer 
protoplanetary disk 
(r > 30 AU)

• Similar cold chemistry as
in ISM including
deuterium fractionation

• Limit to additional
processing such as shocks 
and strong mixing



Ices in DisksIces in Disks

[Boogert et al. 2002, Thi et al. 2002, Watson et al. 2004, Pontoppidan et al. 2005]

5% methanol
H2O:CH3OH

edge-on disk (class I)

upper limit of 5% to
the methanol content
in the ice

• H2O ice abundance in disks ~ 10-4 (relative to H2)

• CO2 and CO ice (CO only mixed with H2O ice)



Ices in DisksIces in Disks

[Dominik et al. 2005, Willacy 2007]

• photodesorption of ices in the irradiated disk surfaces

• non-thermal desorption by cosmic ray heating 

• H2O gas column densities 1-2 1015 cm-2

H2O abundance



• Chemical destruction of H2:          H2 + O H + OH

• C/CO transition at lower/same optical depth as H/H2 transition

• Higher UV fluxes lead to lower molecule abundances in the disk 
atmosphere

[Kamp & Dullemond 2004, Nomura & Millar 2005]  

H/H2

H/H2

Gas energy balanceGas energy balance
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Models of Models of Protoplanetary Protoplanetary DisksDisks

• stationary 2D disk models
• irradiation by the star (+ accretion) determines 

the disk structure

[Chiang & Goldreich 1997, D’Alessio et al. 1998, Willacy & Langer 2000, Aikawa et al 2002,
Jonkheid et al. 2004, Kamp & Dullemond 2004, Nomura & Millar 2005, Meijerink et al. 2008]



Models of Models of Protoplanetary Protoplanetary DisksDisks

• matter is mixed and transported by turbulence
• matter accretes onto the central star dM/dt~10-7 M Sun/yr
• matter continuously falls in from the envelope causing an 

accretion shock at the disk surface

[Aikawa et al. 1999, Gail 2001, Ilgner et al. 2004, Willacy et al. 2006, Semenov et al. 2006]
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[Ilgner et al. 2004]

How does mixing affect the chemistry?How does mixing affect the chemistry?

Mixing has strong effects on the
sulphur chemistry in the inner 
disk R < 10 AU.

chemical gradients
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How does mixing affect the chemistry?How does mixing affect the chemistry?

Mixing has strong effects on the
sulphur chemistry in the inner 
disk R < 10 AU.

diffusion
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How does mixing affect the chemistry?How does mixing affect the chemistry?

Mixing has strong effects on the
sulphur chemistry in the inner 
disk R < 10 AU.

advection

dM/dt = 10-8 M /yr



How does mixing affect the chemistry?How does mixing affect the chemistry?

[van Boekel et al. 2004]

Inner disk has higher degree of
crystallinity than outer disk.
Solid-gas chemical equilibrium
models explain this with high 
temperatures and radial mixing.

[Gail 2004]

1-2 AU 2-20 AU

>80%

<30%


