The evolution of gas discs

Richard Alexander Sterrewacht Leiden

Cathie Clarke, Jim Pringle (Cambridge) Phil Armitage (Colorado), Pascale Garaud (Santa Cruz)

Observational Constraints (see talk by Williams)

- Disc lifetimes are ~Myr (gas and dust tracers).
- Lifetimes are diverse: some discs live for < I Myr; CTTs & WTTs co-exist at similar ages.
- Disc masses range from >0.1 M $_{\odot}$ to $\leq 0.001 M_{\odot}$.
- Accretion rates span >10⁻⁷M_{\odot}yr⁻¹ to \leq 10⁻¹⁰M_{\odot}yr⁻¹.
- Termination of accretion roughly simultaneous with disc clearing.
- Discs are cleared rapidly (in ~10⁵yr), across entire radial extent of disc.
- Observations of **gas** disc evolution are very limited.

Gas evolution processes

- Various processes can affect evolution of gas discs.
- Hollenbach et al. (PPIV), consider all and conclude that:
 - Viscous evolution dominates for radii \leq 10AU.
 - Photoevaporation dominates for radii \geq 10AU.
- Photoevaporation by O-stars is responsible for the "proplyd" phenomenon seen in the ONC. Johnstone et al. (1998)

Gas evolution processes

- Various processes can affect evolution of gas discs.
- Hollenbach et al. (PPIV), consider all and conclude that:
 - Viscous evolution dominates for radii \leq 10AU.
 - Photoevaporation dominates for radii \geq 10AU.
- Photoevaporation by O-stars is responsible for the "proplyd" phenomenon seen in the ONC.

• In this talk I will discuss only "central star" photoevaporation.

Disc photoevaporation

- UV radiation creates a hot layer on disc surface.
- Outside some critical radius, hot gas is unbound and flows as a wind (Hollenbach et al. 1994, 2000).
- Length scale: $R_{\rm g} = \frac{G M_*}{c^2}$
- Two important cases: EUV (ionizing) and FUV (1000-2000Å).
 For T Tauri parameters:

 $R_{\rm g,EUV} \approx 5 {\rm AU}$ $R_{\rm g,FUV} \approx 100 {\rm AU}$

• Recent reviews: Dullemond et al. (2007 - PPV); RDA (2008).

Disc photoevaporation

- EUV is the "easy" case:
 - Radiative transfer is straightforward (Strömgren criterion)
 - Flow is isothermal (10⁴K)
 - Solution insensitive to underlying disc structure or accretion rate
 - Analytic models agree reasonably well with numerical simulations

Disc photoevaporation

- EUV is the "easy" case:
 - Radiative transfer is straightforward (Strömgren criterion)
 - Flow is isothermal (10⁴K)
 - Solution insensitive to underlying disc structure or accretion rate
 - Analytic models agree reasonably well with numerical simulations

- FUV is the "hard" case:
 - Radiative transfer is complex (PDR-like, 2-D, $T_{dust} \neq T_{gas}$)
 - Thermal physics in atmosphere depends on underlying disc structure
 - Incident radiation field depends on accretion rate
 - Flow structure is complex ($R_{disc} \approx R_g$)

EUV + viscous evolution

Clarke et al. (2001); Matsuyama et al. (2003); Ruden (2004)

- For TT parameters, EUV drives a wind at ~10⁻¹⁰M_☉yr⁻¹ from beyond 1-2AU.
- Wind rate constant, accretion rate declines with time.
- Eventually, wind dominates and inner disc drains rapidly (due to viscosity).
- Satisfies the "two-timescale" constraint: rapid clearing after long lifetime (the "UVswitch").

EUV + viscous evolution

Clarke et al. (2001); Matsuyama et al. (2003); Ruden (2004)

- For TT parameters, EUV drives a wind at ~10⁻¹⁰M_☉yr⁻¹ from beyond 1-2AU.
- Wind rate constant, accretion rate declines with time.
- Eventually, wind dominates and inner disc drains rapidly (due to viscosity).
- Satisfies the "two-timescale" constraint: rapid clearing after long lifetime (the "UVswitch").

EUV + viscous evolution

Clarke et al. (2001); Matsuyama et al. (2003); Ruden (2004)

- For TT parameters, EUV drives a wind at ~10⁻¹⁰M_☉yr⁻¹ from beyond 1-2AU.
- Wind rate constant, accretion rate declines with time.
- Eventually, wind dominates and inner disc drains rapidly (due to viscosity).
- Satisfies the "two-timescale" constraint: rapid clearing after long lifetime (the "UVswitch").

Direct photoevaporation

RDA, Clarke & Pringle (2006a)

- Once inner disc has drained, radiative transfer problem chances.
- Direct irradiation of inner disc edge leads to factor of ~10 increase in wind rate.
- Disc is cleared rapidly from inside-out...

Direct photoevaporation

RDA, Clarke & Pringle (2006a)

- Once inner disc has drained, radiative transfer problem chances.
- Direct irradiation of inner disc edge leads to factor of ~10 increase in wind rate.
- Disc is cleared rapidly from inside-out...

Gas disc evolution model

RDA, Clarke & Pringle (2006b)

Evolution of surface density: $M_{\star}=1M_{\odot}$, $\Phi=10^{42}s^{-1}$

Snapshots at t=0, 2, 4, 5.9, 6.0, 6.01, 6.02, 6.03, 6.04....6.18Myr • "Three-stage" model for disc evolution:

- $\dot{M}_{\text{wind}} \ll \dot{M}_{\text{acc}}$, wind negligible, viscous evolution (few Myr).
- $\dot{M}_{wind} \sim \dot{M}_{acc}$, gap opens, viscous draining of inner disc (~10⁵yr).
- Inner hole, wind clears outer disc (few 10⁵yr).

Timescales and toy SED models show good agreement with data

FUV photoevaporation

- No complete models to date.
- Two approaches:
 - Detailed radiative transfer, "toy" hydrodynamics
 - Detailed hydrodynamics, "toy" radiative transfer
- Mass loss concentrated near outer edge of disc (>50AU). Estimated mass-loss rates are ~10⁻⁸M_☉yr⁻¹:

$$M_{\rm wind} \times t_{\rm disc} \gtrsim 0.01 {\rm M}_{\odot}$$

 PDR-like region gives rise to strong emission lines, especially in mid/far-IR (e.g. Gorti & Hollenbach 2008).

FUV photoevaporation

- Work in progress...
- Flow structure is complex sonic surface is not where simple estimates suggest.

Gas in inner discs:

FEPS upper limits on gas masses in evolved systems within a factor of ~10 of model predictions (Hollenbach et al. 2005; Pascucci et al. 2006).

Estimates of ionizing flux:

Small sample of bright sources suggest ~10⁴²⁻⁴³photon/s (RDA et al. 2005); new data suggest somewhat smaller values (Herczeg et al., 2007b; in prep.). <u>HST COS will improve data greatly.</u>

Emission lines:

Models predict that FUV (and X-ray) irradiation should produce strong emission lines ([OI], H₂, CO, etc.) from PDR-like disc atmosphere (e.g. Gorti & Hollenbach 2008). Excellent Herschel/SOFIA targets.

Herczeg et al. (2007b; in prep.)

Gas in inner discs:

FEPS upper limits on gas masses in evolved systems within a factor of ~10 of model predictions (Hollenbach et al. 2005; Pascucci et al. 2006).

Estimates of ionizing flux:

Small sample of bright sources suggest ~10⁴²⁻⁴³photon/s (RDA et al. 2005); new data suggest somewhat smaller values (Herczeg et al., 2007b; in prep.). HST COS will improve data greatly.

Emission lines:

Models predict that FUV (and X-ray) irradiation should produce strong emission lines ([OI], H₂, CO, etc.) from PDR-like disc atmosphere (e.g. Gorti & Hollenbach 2008). Excellent Herschel/SOFIA targets.

- EUV wind should give produce forbidden line emission from ionized species: [SII], [OIII], [NeII], etc.
- Models provide good fits to low-resolution optical data.
- New instruments capable of resolving velocities <10km/s.
- Current and future observations should unambigiously detect the velocity signature of the wind.

Font et al. (2004)

- EUV wind should give produce forbidden line emission from ionized species: [SII], [OIII], [NeII], etc.
- Models provide good fits to low-resolution optical data.
- New instruments capable of resolving velocities <10km/s.
- Current and future observations should unambigiously detect the velocity signature of the wind.

- EUV wind should give produce forbidden line emission from ionized species: [SII], [OIII], [NeII], etc.
- Models provide good fits to low-resolution optical data.
- New instruments capable of resolving velocities <10km/s.
- Current and future observations should unambigiously detect the velocity signature of the wind.

RDA, in prep.

Disc evolution: summary

- Protoplanetary discs evolve, primarily due to "viscosity".
- During this viscous evolution phase, dust evolution and/or planet formation occur.
- At late times EUV photoevaporation becomes significant and clears the (gas) disc. Such models satisfy available constraints on timescales, and reproduce observed data well.
- Models of FUV photoevaporation remain in progress. Seems likely that this wind can remove a significant fraction of the disc mass over a ~Myr lifetime.
- Observations of gas emission lines should provide critical tests of current theoretical models.