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Observational Constraints

• Disc lifetimes are ~Myr (gas and dust tracers).

• Lifetimes are diverse: some discs live for <1Myr; 
CTTs & WTTs co-exist at similar ages.

• Disc masses range from >0.1M☉ to ≤0.001M☉.

• Accretion rates span >10-7M☉yr-1 to ≤10-10M☉yr-1.

• Termination of accretion roughly simultaneous with 
disc clearing.

• Discs are cleared rapidly (in ~105yr), across entire 
radial extent of disc.

• Observations of gas disc evolution are very limited.

(see talk by Williams)



Gas evolution processes

• Various processes can affect evolution of gas discs.

• Hollenbach et al. (PPIV), consider all and conclude that:
- Viscous evolution dominates for radii ≤ 10AU.

- Photoevaporation dominates for radii ≥ 10AU. 

• Photoevaporation by O-stars is responsible for the “proplyd” 
phenomenon seen in the ONC. Johnstone et al. (1998)
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• In this talk I will discuss only “central star” photoevaporation.



Disc photoevaporation

• UV radiation creates a hot layer on disc surface.

• Outside some critical radius, hot gas is unbound and flows 
as a wind (Hollenbach et al. 1994, 2000).

• Length scale:

• Two important cases: EUV (ionizing) and FUV (1000-2000Å).  
For T Tauri parameters:

• Recent reviews:  Dullemond et al. (2007 - PPV); RDA (2008).

Rg =
GM∗

c2
s

Rg,EUV ≈ 5AU Rg,FUV ≈ 100AU



Disc photoevaporation

• EUV is the “easy” case:
- Radiative transfer is straightforward (Strömgren criterion)

- Flow is isothermal (104K)

- Solution insensitive to underlying disc structure or accretion rate

- Analytic models agree reasonably well with numerical simulations

Hollenbach et al. (1994, 2000)



Disc photoevaporation

• EUV is the “easy” case:
- Radiative transfer is straightforward (Strömgren criterion)

- Flow is isothermal (104K)

- Solution insensitive to underlying disc structure or accretion rate

- Analytic models agree reasonably well with numerical simulations

• FUV is the “hard” case:
- Radiative transfer is complex (PDR-like,  2-D,   Tdust ≠ Tgas)

- Thermal physics in atmosphere depends on underlying disc structure

- Incident radiation field depends on accretion rate

- Flow structure is complex (Rdisc ≈ Rg)



EUV + viscous evolution
Clarke et al. (2001); Matsuyama et al. (2003); Ruden (2004)

Similarity solution
(viscous evolution)

• For TT parameters, EUV 
drives a wind at ~10-10M☉yr-1 

from beyond 1-2AU. 

• Wind rate constant, 
accretion rate declines with 
time.

• Eventually, wind dominates 
and inner disc drains rapidly 
(due to viscosity).

• Satisfies the “two-timescale” 
constraint: rapid clearing 
after long lifetime (the “UV-
switch”).
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Similarity solution
(viscous evolution)

Wind rate

Viscous evolution + wind

• For TT parameters, EUV 
drives a wind at ~10-10M☉yr-1 

from beyond 1-2AU. 

• Wind rate constant, 
accretion rate declines with 
time.

• Eventually, wind dominates 
and inner disc drains rapidly 
(due to viscosity).

• Satisfies the “two-timescale” 
constraint: rapid clearing 
after long lifetime (the “UV-
switch”).



• Once inner disc has drained, radiative transfer problem chances.
• Direct irradiation of inner disc edge leads to factor of ~10 increase in 

wind rate.
• Disc is cleared rapidly from inside-out...

Direct photoevaporation
RDA, Clarke & Pringle (2006a)
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• “Three-stage” model for 
disc evolution:

-                      , wind negligible, 
viscous evolution (few Myr).

-                    , gap opens, 
viscous draining of inner disc 
(~105yr).

- Inner hole, wind clears outer 
disc (few 105yr).

Gas disc evolution model

Snapshots at t=0, 2, 4, 5.9, 6.0, 6.01, 
6.02, 6.03, 6.04....6.18Myr

RDA, Clarke & Pringle (2006b)

Ṁwind ! Ṁacc

Ṁwind ∼ Ṁacc

Timescales and toy SED models show good agreement with data



FUV photoevaporation

• No complete models to date.

• Two approaches:
- Detailed radiative transfer, “toy” hydrodynamics

- Detailed hydrodynamics, “toy” radiative transfer

• Mass loss concentrated near outer edge of disc 
(>50AU).  Estimated mass-loss rates are 
~10-8M☉yr-1:

• PDR-like region gives rise to strong emission lines, 
especially in mid/far-IR (e.g. Gorti & Hollenbach 
2008).

˙Mwind × tdisc ! 0.01M!



FUV photoevaporation

• Work in progress...

• Flow structure is complex - sonic surface is not 
where simple estimates suggest.



Pascucci et al. (2006)

Emission lines:  

Models predict that FUV (and X-ray) irradiation should produce strong 
emission lines ([OI], H2, CO, etc.) from PDR-like disc atmosphere (e.g. 
Gorti & Hollenbach 2008).  Excellent Herschel/SOFIA targets. 

Observing disc photoevaporation
Gas in inner discs:

FEPS upper limits on gas masses in 
evolved systems within a factor of ~10 
of model predictions (Hollenbach et 
al. 2005; Pascucci et al. 2006).

Estimates of ionizing flux:  

Small sample of bright sources suggest 
~1042-43photon/s (RDA et al. 2005); 
new data suggest somewhat smaller 
values (Herczeg et al., 2007b; in prep.).  

HST COS will improve data greatly.
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Font et al. (2004)

Observing disc photoevaporation

• EUV wind should give produce 
forbidden line emission from 
ionized species: [SII], [OIII], 
[NeII], etc.

• Models provide good fits to 
low-resolution optical data.

• New instruments capable of 
resolving velocities <10km/s.

• Current and future 
observations should 
unambigiously detect the 
velocity signature of the wind.
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Schematic picture of (gas) disc evolution
Figures courtesy of David Hollenbach
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Disc evolution: summary

• Protoplanetary discs evolve, primarily due to “viscosity”.

• During this viscous evolution phase, dust evolution and/or 
planet formation occur.

• At late times EUV photoevaporation becomes significant and 
clears the (gas) disc.  Such models satisfy available 
constraints on timescales, and reproduce observed data well.

• Models of FUV photoevaporation remain in progress.  Seems 
likely that this wind can remove a significant fraction of the 
disc mass over a ~Myr lifetime.

• Observations of gas emission lines should provide critical 
tests of current theoretical models.


