Algorithms for Large Sets of Points

Dave Abel CSIRO ICT Centre

- CSIRO: Australia's govt-funded r&d agency. About 6500 staff.
- ICT Centre: the ICT unit. About 170 staff;
- eScience: data grids, workflow.
 About 6 people.

Why choose this topic?

- Solution times of days were a challenge.
- Joins are clearly a core problem in data integration;
- 'Must solve' to tackle data fusion in collections pf databases contributed by members of a community of interest.

- 2 case studies:
 - Catalogue matching;
 - Neighbour finding.
- Work in progress:
 - More point operations;
 - Searching unstructured collections.

Not the same problem ...

Catalogue Matching

- Determine equivalent pairs of bodies in two catalogues, on the basis of imprecise locations;
- Not quite a spatial join.

Neighbour Finding

- Determine, within a data set, the pairs of objects whose asserted positions are less n arcseconds apart
- Aka fixed-radius all-neighbors problem.

- Deal with points from 'Test'set in ascending sequence by declination;
- Maintain an 'active list' of points from the other set, that could possibly match the current point from Test or points still to come;
- Event is maintenance of active list, and searching within it for a match.

Basis for Algorithms

Filter and Refine

But dec and ra in turn;

- Plane Sweep (on the Sphere)
 - Structure algorithm as processing for regular events;
 - Force regular events by processing in order by declination.

The Active List

 $T[dec] + 1.96\sqrt{(max\sigma_a^2 + \sigma_t^2)}$ T[dec] T[dec] - $1.96\sqrt{(\max\sigma_a^2 + \max\sigma_t^2)}$ Test Set Active Set

www.csiro.au

Maintaining The Active List

www.csiro.au

Testing Matches

- The update discipline gives a fair first-pass test on declination;
- Test members against current point in terms of range of right ascension;
- The list (double-ended queue) is typically small:
 - 'Scan all' is good, usually;
 - Apply a binary tree as an index on ra for large lists (0.5B x 0.5B matches, or high imprecisions).
- Then test by angular distance.

	1XMM	SUMSS	Tycho2	2MASS	USNOA2	USNOB1
1XMM	0:01					
SUMSS	0:01	0:01				
Tycho2	0:04	0:03	0:08			
2MASS	13:42	8:40	14:12	93:36		
USNOA2	15:36	11:36	15:42	92:00	48:36	
USNOB1	31:30	19:12	33:06	149:00	134:30	282:00

1XMM	56K	2MASS	470M
SUMSS	134K	USNOA2	526M
Tycho2	2.5M	USNOB1	1.0B

1XMM	56"	2MASS	1.2"
SUMSS	22"	USNOA2	0.2"
Tycho2	0.2"	USNOB1	1.0"

For the sake of completeness ...

- Also report the unmatched objects from the two sets;
- Allow object-by-object imprecisions;
- Test by confidence levels on the angular separation by reference to the imprecisions of the two objects.

But all of these are easily parameterised.

www.csiro.au

Neighbour finding

c] + X

Same approach:

•Current is tail of the active list;

•Test by ra to generate candidates;

•Test candidates in terms of angular separation.

		Arcsec	
	1	15	30
1XMM	<0:01	<0:01	<0:01
SUMSS	<0:01	<0.01	<0:01
Tycho2	0:06	0:05	0:06
2MASS	68:00	103:00	175:00
USNO A2	78:00	118:00	190:00

Work in progress

Implementations

- Implement as a db stored procedure?
- How best to implant in distributed db?

Where will it work?

- Essentially the approach is to localise operations within a batched problem;
- Exploits, and is dependent on, some domain-specific aspects;
- Evaluation of local clusters should fall into this class;
- 1 is lucky, 2 is intriguing, 3 says there could be something worthwhile.

Other Work in Progress

- Data mining, as searching for bodies with a certain signature;
- Can we trawl an unstructured collection of VO data nodes?
 - Without a global schema?
 - What provisions for inconsistency?
 - Encouraging sound science?
 - Performance?

Code and reports available real soon now.

Email: <u>dave.abel@csiro.au</u>

