Data Mining and Science

Padhraic Smyth Information and Computer Science University of California, Irvine

July 2004

SC4DEVO-1 Astronomy Workshop, Caltech

Outline

- Introductory comments on data mining
- Data mining and science
- Hot topics in data mining
- Data mining using probabilistic models
 - Modeling/clustering non-vector data
 - Automatically extracting topics from text documents
- Concluding comments

Technological Driving Factors

- Larger, cheaper memory
 - rapid increase in disk densities
 - storage cost per byte falling rapidly
- Faster, cheaper processors
 - the CRAY of 10 years ago is now on your desk
- Success of Relational Database technology
 - everybody is a "data owner"
- Flexible modeling paradigms
 - generalized linear models, decision trees, etc
 - rise of data-driven, computationally-intensive, statistics

"the art of fishing over alternative models"

M. C. Lovell, *The Review of Economics and Statistics* February 1983

"The magic phrase to put in every funding proposal written to NSF, DARPA, NASA, etc"

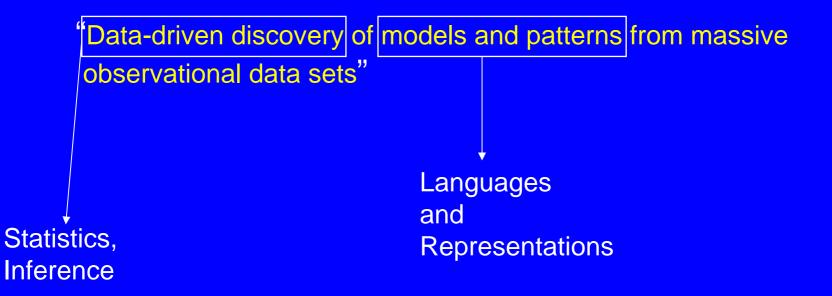
"The magic phrase used to sell

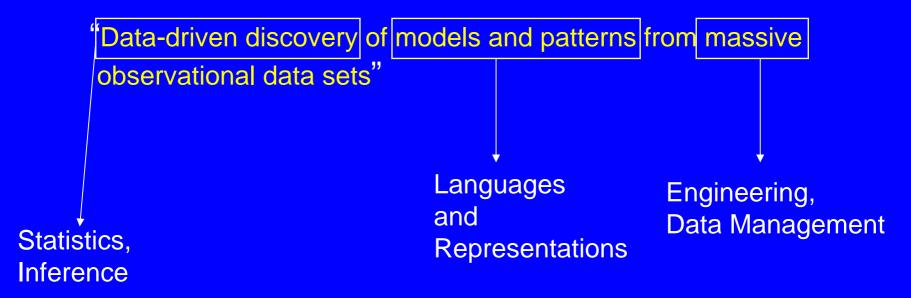
- database software
- statistical analysis software
- parallel computing hardware
- consulting services"

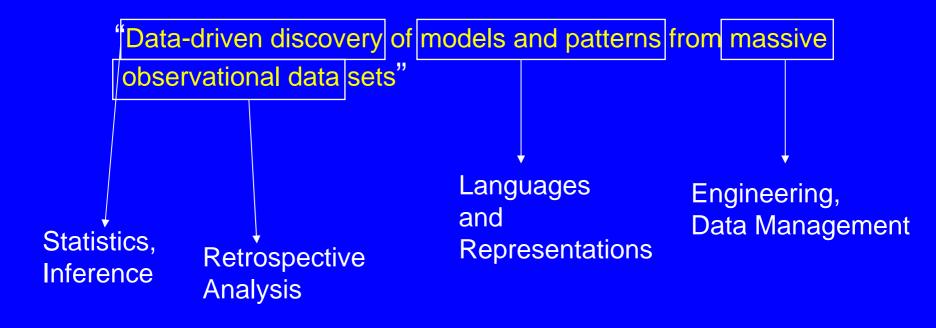
"Data-driven discovery of models and patterns from massive observational data sets"

Data-driven discovery of models and patterns from massive observational data sets"

Statistics, Inference







Implications

- Data mining algorithms span a range of disciplines
 - models/representations: mathematics, probability, CS
 - score functions: statistics
 - search/optimization: numerical methods, OR, AI
 - data management: data structures, databases
 - evaluation: domain knowledge
- Thus,.....
 - A data miner should have some grasp of all of these topics
 - as well as understanding the "art/engineering" of how to integrate all of these components together given a particular data analysis problem
 - (has important implications for education)

Two Types of Data

- Experimental Data
 - Hypothesis H
 - design an experiment to test H
 - collect data, infer how likely it is that H is true
 - e.g., clinical trials in medicine
- Observational or Retrospective or Secondary Data
 - massive non-experimental data sets
 - e.g., human genome, climate data, sky surveys, etc
 - assumptions of experimental design no longer valid
 - e.g., no a priori hypotheses
 - how can we use such data to do science?
 - e.g., use data to simulate experimental conditions

Data-Driven Science

- Assumptions
 - observational data is cheap, experimental data is expensive
 - observational data is massive
- Basic concepts
 - simulate experimental setup
 - random sample for data/model exploration and building
 - random sample for model evaluation
 - data-driven techniques
 - cross-validation, bootstrap, etc
 - finally (important!), conduct an actual experiment to verify final results

Themes in Current Data Mining

- Predictive Modeling
 - e.g., for multivariate data -> predict Y given X
 - Classification, regression, etc
 - well-proven technology, many business applications
- Data Exploration
 - clustering, pattern discovery, dependency models
 - metrics for success are not so clear
 - more suited to interactive exploration and discovery
- "Non-vector data"
 - text, images, etc
 - many innovative ideas, e.g., automated extraction of topics from text documents
- Scalable algorithms
 - General purpose data structures/algorithms for massive data
 - e.g., see Brigham Anderson's talk

Applications of Data Mining

Business

- spam email: naïve Bayes, logistic regression classifiers
- finance: automated credit scoring
- telecommunications: fraud detection
- marketing: ranking of customers for catalog mailing
- Internet advertising: customization of ads during Web browsing
- Sciences
 - Outside of bioinformatics, relatively few clear success stories
 - Why?
 - Scientific data is more complex: time, space
 - existing multivariate DM tools are inadequate
 - Scientific models require more than just prediction
 - interpretability + predictive power

Data Mining: Science vs. Business

- Business applications:
 - Predictive power is most important
 - Interpretability -> not so important
 - "black box" models are ok
- Scientific applications:
 - Both predictive power and interpretability are important
 - Role of data mining algorithm is often to suggest new scientific hypotheses
 - Data mining = "scientific assistant" (rather than being the end goal)
- However.....
 - Historically, data mining has emphasized the business side
 - That's where most of the funding/profit/jobs are
 - e.g., ACM SIGKDD conference: most papers oriented towards business applications

Hot Topics in Data Mining

- Flexible predictive modeling
 - random forests, boosting, support vector machines, etc
- Engineering of scale
 - scaling up statistics to massive data sets
- Pattern finding
 - discovering associations, rules, bumps, sequential patterns
- Probabilistic modeling and learning
 - Use of hidden variable models
 - mixtures, HMMs, independent components, factors, etc
- "Non-Vector" Data
 - text, Web, multimedia (video/audio), graphs/networks, etc

Topics that are not Hot (but should be!)

- Software environments for data-driven scientific modeling
 - not just off-the-shelf tools for empirical modeling
 - instead:
 - full support for data-driven mechanistic modeling
 - high-level languages for model specification
 - scientist focuses on model structure
 - software takes care of estimation details
- Spatio-temporal data mining
 - richer spatio-temporal data representations and tools
 - e.g., object-level inference versus grid-modeling
- Integration of prior knowledge
 - flexible practical techniques for representing what we know

Data Mining using Probabilistic Models

P(Data | Model)

Stochastic Model Observed Data

P(Model | Data)

P(Data | Model)

Stochastic Model Observed Data

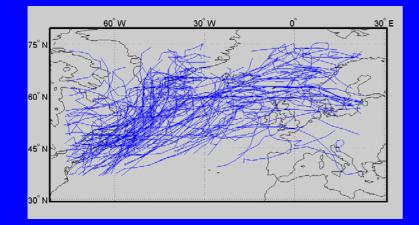
P(Model | Data)

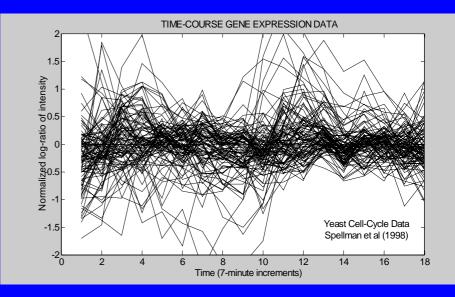
"All models are wrong, but some are useful" G. E. P. Box

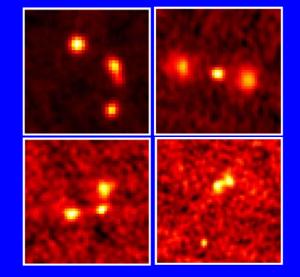
Data Mining with Probabilistic Models

- Advantages
 - Can leverage wealth of ideas from statistical literature
 - Parameter estimation
 - Missing data
 - Hidden variables
 - Very useful for integrating multiple data sources
 - Provides a general and principled language for inference
- Potential disadvantages
 - Traditionally used on small data sets: scalable?
 - Requires explicit model assumptions

"Non-Vector Data"







How can we cluster such data?

(for general modeling of such data see Eric Mjolsness' talk)

Clustering "non-vector" data

- Challenges with the data....
 - May be of different "lengths", "sizes", etc
 - Not easily representable in vector spaces
 - Distance is not naturally defined a priori
- Possible approaches
 - "convert" into a fixed-dimensional vector space
 - Apply standard vector clustering but loses information
 - use hierarchical clustering
 - But O(N²) and requires a distance measure
 - probabilistic clustering with mixtures
 - Define a generative mixture model for the data
 - Learn distance and clustering simultaneously

More generally.....

$$p(D_i) = \sum_{k=1}^{K} p(D_i | c_k) \alpha_k$$

Generative Model

- select a component c_k for individual i

- generate data according to $p(D_i | c_k)$

- $p(D_i | c_k)$ can be very general
- e.g., sets of sequences, spatial patterns, etc

[Note: given $p(D_i | c_k)$, we can usually define an EM algorithm for learning] **Mixtures as "Data Simulators"**

For i = 1 to N

class_i ~ p(class)

 $\mathbf{x}_i \sim p(\mathbf{x} \mid class_i)$

end

Mixtures with Markov Dependence

For i = 1 to N

class_i ~ p(class | class_{i-1})

 $\mathbf{x}_{i} \sim p(\mathbf{x} \mid class_{i})$

end

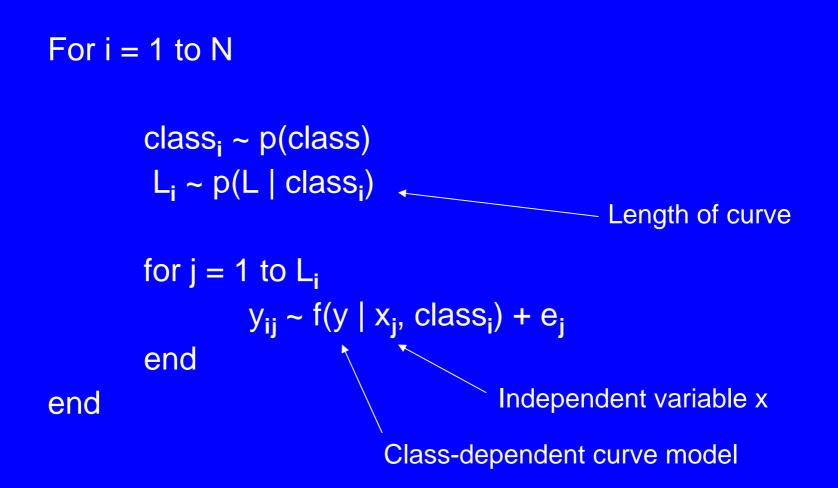
Current class depends on previous class (Markov dependence)

This is a hidden Markov model

Mixtures of Sequences

For i = 1 to N class_i ~ p(class) Produces a variable length sequence while non-end state $x_{ij} \sim p(x_j | x_{j-1}, class_i)$ end end Markov sequence model

Mixtures of Curves



Mixtures of Spatial Objects

For i = 1 to N

 $\begin{array}{l} class_{i} \sim p(class) \\ scale_{i} \sim p(scale|class_{i}) \longleftarrow Global \ scale \\ for \ j = 1 \ to \ number \ of \ landmarks \\ (x,y)_{ij} \sim p(location_{j} \mid scale_{i} \ , \ class_{i}) \\ features_{ij} \sim p(features_{j} \mid scale_{i}, \ class_{i}) \\ end \end{array}$

end

Prescription for generative modeling...

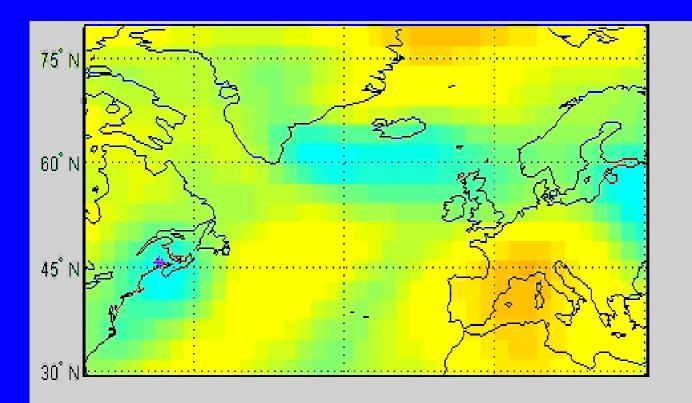
- Forward modeling (probability): construct a generative probabilistic model that could generate the data of interest
- Inverse inference (learning, statistics): given observed data, now infer the parameters of our model (e.g., using EM)

Clustering of Cyclone Trajectories

[with Scott Gaffney (UCI), Andy Robertson (IRI/Columbia), Michael Ghil (UCLA)]

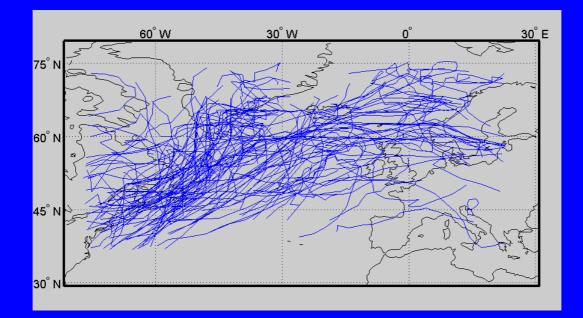
Data

- Sea-level pressure on a global grid
- Four times a day, every 6 hours, over 20 to 30 years



Blue = low pressure

Extra-Tropical Cyclones

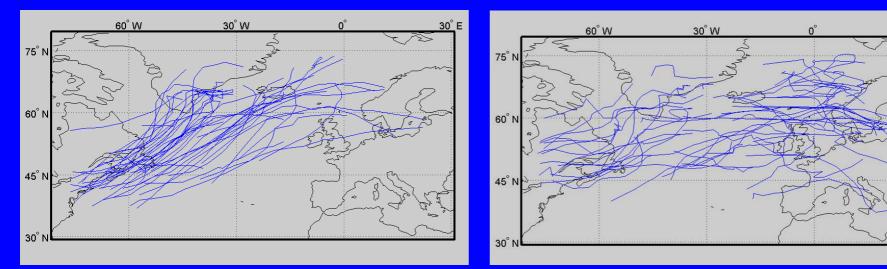


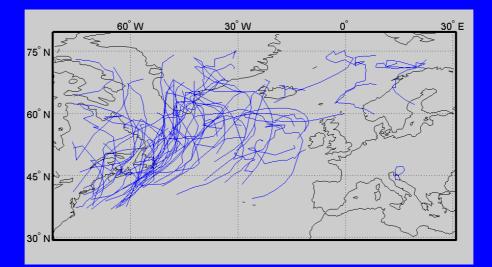
- Importance
 - Highly damaging weather over Europe
 - Important water-source in Western US
 - Influence of climate on cyclone frequency, strength, etc.
 - Impact of cyclones on local weather patterns

Clustering Methodology

- Mixtures of polynomials
 - model as mixtures of noisy regression models
 - 2d (x,y) position as a function of time
 - $x_k(t) = a_k + b_k t + c_k t^2$
 - could also use AR or state-space models
 - use the model as a first-order approximation for clustering
- Compare to vector-based clustering...
 - allows for variable-length trajectories
 - allows coupling of other "features" (e.g., intensity)
 - provides a quantitative (e.g., predictive) model
 - can handle missing measurements

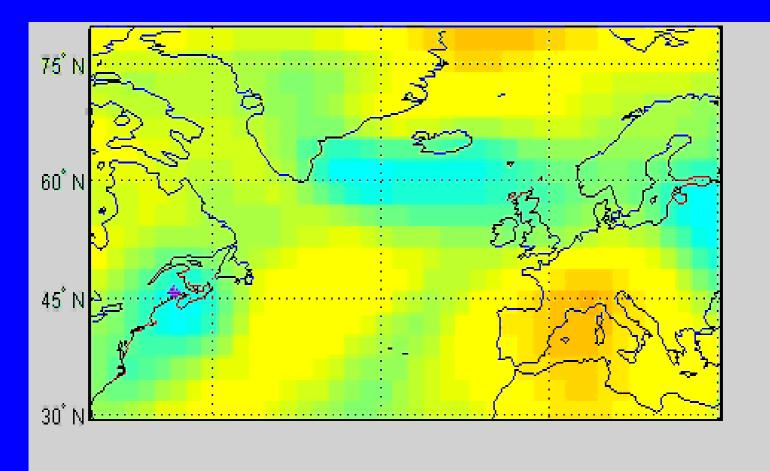
Clusters of Trajectories



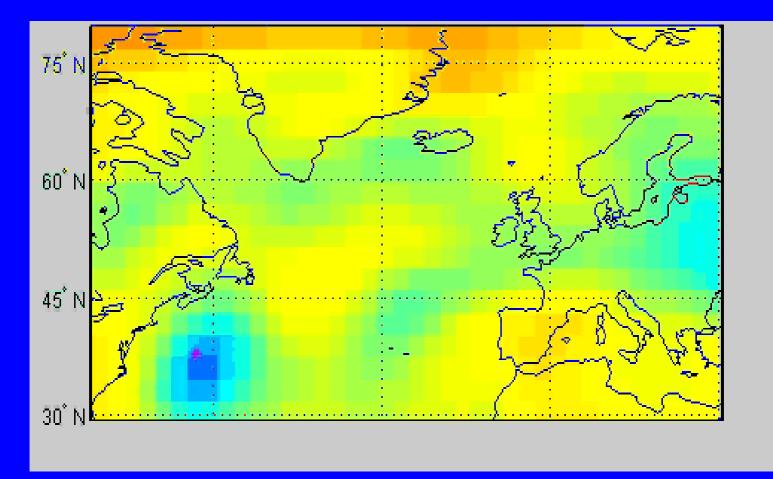


30[°] E

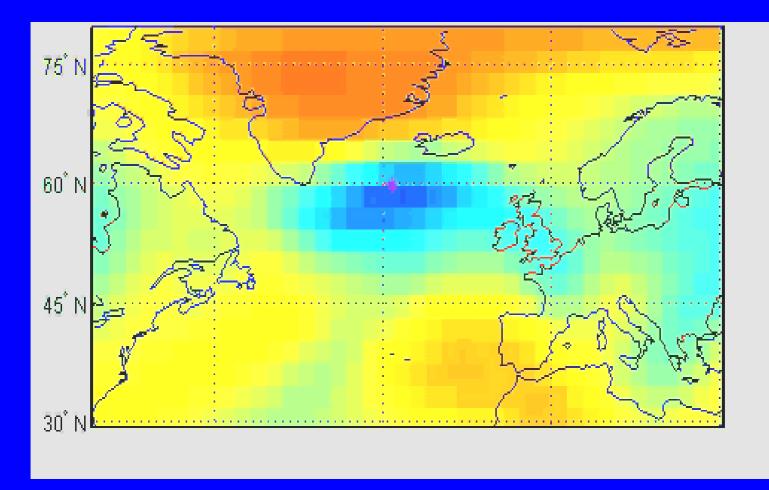
"Iceland Cluster"



"Northern Europe Cluster"



"Greenland Cluster"



Why is this useful to the scientists?

- Visualization and Exploration
 - improved understanding of cyclone dynamics
- Change Detection
 - can quantitatively compare cyclone statistics over different era's or from different models
- Linking cyclones with climate and weather
 - correlation of clusters with NAO index
 - correlation with windspeeds in Northern Europe

Extensions

- More flexible curve models
 - mixtures of splines
 - random effects/hierarchical Bayes
 - mixtures of dynamical systems
- Other additions
 - background models for noisy trajectories
 - random shifts/offsets
 - coupling of other features: intensity, vorticity

Generalizations to Other Problems

- Mixtures of Markov chains
 - used to cluster variable-length categorical sequences
 - Clustering and visualization of Web users at msnbc.com
 - Cadez et al, 2000 and 2003
 - Algorithm is part of latest version of SQLServer
- Mixtures of spatial image patches
 - Used to cluster and align images of "double-bent galaxies"
 - Kirshner et al, 2002, 2003
- Mixtures of synthesis-decay equations
 - Used for clustering time-course gene expression data
 - Chudova, Mjolsness, Smyth, 2003

Statistical Data Mining of Text Data

[with Michal Rosen-Zvi, Mark Steyvers (UCI), Thomas Griffiths (Stanford)]

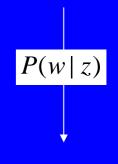
Statistical Data Mining of Text Documents

- Probabilistic models for text
 - Represent each document as a vector of word counts
 - A topic is a probability distribution on words
 - Documents are generated stochastically by mixtures of topics
 - Multiple topics can be active on a single document
- Forward model:
 - Probabilistic model with hidden/unknown topic variables
- Inverse Learning:
 - Can learn topic models in a completely unsupervised manner
 - e.g., using EM or Gibbs sampling

A topic is represented as a (multinomial) distribution over words

TOPIC 209				
WORD	PROB.			
PROBABILISTIC	0.0778			
BAYESIAN	0.0671			
PROBABILITY	0.0532			
CARLO	0.0309			
MONTE	0.0308			
DISTRIBUTION	0.0257			
INFERENCE	0.0253			
PROBABILITIES	0.0253			
CONDITIONAL	0.0229			
PRIOR	0.0219			

TOPIC 289				
WORD	PROB.			
RETRIEVAL	0.1179			
TEXT	0.0853			
DOCUMENTS	0.0527			
INFORMATION	0.0504			
DOCUMENT	0.0441			
CONTENT	0.0242			
INDEXING	0.0205			
RELEVANCE	0.0159			
COLLECTION	0.0146			
RELEVANT	0.0136			



Data and Experiments

• Text Corpora

- CiteSeer: 160K abstracts, 85K authors, 20 million word tokens
- NIPS: 1.7K papers, 2K authors
- Enron: 115K emails, 5K authors (sender)
- Removed stop words; no stemming
- Word order is irrelevant, just use word counts
- Learning the model: Nips: 2000 Gibbs iterations → 12 hours on PC workstation CiteSeer: 2000 Gibbs iterations → 1 week

But querying the model (once learned) can be done in real-time

4 Examples of CiteSeer Topics (300 in total)

TOPIC 205	5	TOPIC 209)	TOPIC 289)	TOPIC 1	0
WORD	PROB.	WORD	PROB.	WORD	PROB.	WORD	PROB.
DATA	0.1563	PROBABILISTIC	0.0778	RETRIEVAL	0.1179	QUERY	0.1848
MINING	0.0674	BAYESIAN	0.0671	TEXT	0.0853	QUERIES	0.1367
ATTRIBUTES	0.0462	PROBABILITY	0.0532	DOCUMENTS	0.0527	INDEX	0.0488
DISCOVERY	0.0401	CARLO	0.0309	INFORMATION	0.0504	DATA	0.0368
ASSOCIATION	0.0335	MONTE	0.0308	DOCUMENT	0.0441	JOIN	0.0260
LARGE	0.0280	DISTRIBUTION	0.0257	CONTENT	0.0242	INDEXING	0.0180
KNOWLEDGE	0.0260	INFERENCE	0.0253	INDEXING	0.0205	PROCESSING	0.0113
DATABASES	0.0210	PROBABILITIES	0.0253	RELEVANCE	0.0159	AGGREGATE	0.0110
ATTRIBUTE	0.0188	CONDITIONAL	0.0229	COLLECTION	0.0146	ACCESS	0.0102
DATASETS	0.0165	PRIOR	0.0219	RELEVANT	0.0136	PRESENT	0.0095
AUTHOR	PROB.	AUTHOR	PROB.	AUTHOR	PROB.	AUTHOR	PROB.
Han_J	0.0196	Friedman_N	0.0094	Oard_D	0.0110	Suciu_D	0.0102
Rastogi_R	0.0094	Heckerman_D	0.0067	Croft_W	0.0056	Naughton_J	0.0095
Zaki_M	0.0084	Ghahramani_Z	0.0062	Jones_K	0.0053	Levy_A	0.0071
Shim_K	0.0077	Koller_D	0.0062	Schauble_P	0.0051	DeWitt_D	0.0068
Ng_R	0.0060	Jordan_M	0.0059	Voorhees_E	0.0050	Wong_L	0.0067
Liu_B	0.0058	Neal_R	0.0055	Singhal_A	0.0048	Chakrabarti_K	0.0064
Mannila_H	0.0056	Raftery_A	0.0054	Hawking_D	0.0048	Ross_K	0.0061
Brin_S	0.0054	Lukasiewicz_T	0.0053	Merkl_D	0.0042	Hellerstein_J	0.0059
Liu_H	0.0047	Halpern_J	0.0052	Allan_J	0.0040	Lenzerini_M	0.0054
Holder_L	0.0044	Muller_P	0.0048	Doermann_D	0.0039	Moerkotte_G	0.0053

More example topics from CiteSeer

TOPIC 10		TOPIC 209	Ð	TOPIC 87		TOPIC 20	
WORD	PROB.	WORD	PROB.	WORD	PROB.	WORD	PROB.
SPEECH	0.1134	PROBABILISTIC	0.0778	USER	0.2541	STARS	0.0164
RECOGNITION	0.0349	BAYESIAN	0.0671	INTERFACE	0.1080	OBSERVATIONS	0.0150
WORD	0.0295	PROBABILITY	0.0532	USERS	0.0788	SOLAR	0.0150
SPEAKER	0.0227	CARLO	0.0309	INTERFACES	0.0433	MAGNETIC	0.0145
ACOUSTIC	0.0205	MONTE	0.0308	GRAPHICAL	0.0392	RAY	0.0144
RATE	0.0134	DISTRIBUTION	0.0257	INTERACTIVE	0.0354	EMISSION	0.0134
SPOKEN	0.0132	INFERENCE	0.0253	INTERACTION	0.0261	GALAXIES	0.0124
SOUND	0.0127	PROBABILITIES	0.0253	VISUAL	0.0203	OBSERVED	0.0108
TRAINING	0.0104	CONDITIONAL	0.0229	DISPLAY	0.0128	SUBJECT	0.0101
MUSIC	0.0102	PRIOR	0.0219	MANIPULATION	0.0099	STAR	0.0087
AUTHOR	PROB.	AUTHOR	PROB.	AUTHOR	PROB.	AUTHOR	PROB.
Waibel_A	0.0156	Friedman_N	0.0094	Shneiderman_B	0.0060	Linsky_J	0.0143
Gauvain_J	0.0133	Heckerman_D	0.0067	Rauterberg_M	0.0031	Falcke_H	0.0131
Lamel_L	0.0128	Ghahramani_Z	0.0062	Lavana_H	0.0024	Mursula_K	0.0089
Woodland_P	0.0124	Koller_D	0.0062	Pentland_A	0.0021	Butler_R	0.0083
Ney_H	0.0080	Jordan_M	0.0059	Myers_B	0.0021	Bjorkman_K	0.0078
Hansen_J	0.0078	Neal_R	0.0055	Minas_M	0.0021	Knapp_G	0.0067
Renals_S	0.0072	Raftery_A	0.0054	Burnett_M	0.0021	Kundu_M	0.0063
Noth_E	0.0071	Lukasiewicz_T	0.0053	Winiwarter_W	0.0020	Christensen-J	0.0059
Boves_L	0.0070	Halpern_J	0.0052	Chang_S	0.0019	Cranmer_S	0.0055
Young_S	0.0069	Muller_P	0.0048	Korvemaker_B	0.0019	Nagar_N	0.0050

4 Examples of NIPS Topics (100 in total)

TOPIC 19				
WORD	PROB.			
LIKELIHOOD	0.0539			
MIXTURE	0.0509			
EM	0.0470			
DENSITY	0.0398			
GAUSSIAN	0.0349			
ESTIMATION	0.0314			
LOG	0.0263			
MAXIMUM	0.0254			
PARAMETERS	0.0209			
ESTIMATE	0.0204			
AUTHOR	PROB.			
Tresp_V	0.0333			
Singer_Y	0.0281			
Jebara_T	0.0207			
Ghahramani_Z	0.0196			
Ueda_N	0.0170			
Jordan_M	0.0150			
Roweis_S	0.0123			
Schuster_M	0.0104			
Xu_L	0.0098			
Saul_L	0.0094			

TOPIC 24					
WORD	PROB.				
RECOGNITION	0.0400				
CHARACTER	0.0336				
CHARACTERS	0.0250				
TANGENT	0.0241				
HANDWRITTEN	0.0169				
DIGITS	0.0159				
IMAGE	0.0157				
DISTANCE	0.0153				
DIGIT	0.0149				
HAND	0.0126				
AUTHOR	PROB.				
AUTHOR Simard_P	PROB. 0.0694				
	_				
Simard_P	0.0694				
Simard_P Martin_G	0.0694 0.0394				
Simard_P Martin_G LeCun_Y Denker_J	0.0694 0.0394 0.0359				
Simard_P Martin_G LeCun_Y Denker_J	0.0694 0.0394 0.0359 0.0278				
Simard_P Martin_G LeCun_Y Denker_J Henderson_D	0.0694 0.0394 0.0359 0.0278 0.0256				
Simard_P Martin_G LeCun_Y Denker_J Henderson_D Revow_M	0.0694 0.0394 0.0359 0.0278 0.0256 0.0229				
Simard_P Martin_G LeCun_Y Denker_J Henderson_D Revow_M Platt_J	0.0694 0.0394 0.0359 0.0278 0.0256 0.0229 0.0226				

TOPIC 29			
WORD	PROB.		
REINFORCEMENT	0.0411		
POLICY	0.0371		
ACTION	0.0332		
OPTIMAL	0.0208		
ACTIONS	0.0208		
FUNCTION	0.0178		
REWARD	0.0165		
SUTTON	0.0164		
AGENT	0.0136		
DECISION	0.0118		
AUTHOR	PROB.		
Singh_S	0.1412		
Barto_A	0.0471		
Sutton_R	0.0430		
Dayan_P	0.0324		
Parr_R	0.0314		
Dietterich_T	0.0231		
Tsitsiklis_J	0.0194		
Randlov_J	0.0167		
Bradtke_S	0.0161		
Schwartz_A	0.0142		

TOPIC 87					
WORD	PROB.				
KERNEL	0.0683				
SUPPORT	0.0377				
VECTOR	0.0257				
KERNELS	0.0217				
SET	0.0205				
SVM	0.0204				
SPACE	0.0188				
MACHINES	0.0168				
REGRESSION	0.0155				
MARGIN	0.0151				
AUTHOR	PROB.				
Smola_A	0.1033				
Scholkopf_B	0.0730				
Burges_C	0.0489				
Vapnik_V	0.0431				
Chapelle_O	0.0210				
Cristianini_N	0.0185				
Ratsch_G	0.0172				
Laskov_P	0.0169				
Tipping_M	0.0153				
Sollich_P	0.0141				

ENRON Email: two example topics (T=100)

TOPIC 10				
WORD	PROB.			
BUSH	0.0227			
LAY	0.0193			
MR	0.0183			
WHITE	0.0153			
ENRON	0.0150			
HOUSE	0.0148			
PRESIDENT	0.0131			
ADMINISTRATION	0.0115			
COMPANY	0.0090			
ENERGY	0.0085			
SENDER	PROB.			
NELSON, KIMBERLY (ETS)	0.3608			
PALMER, SARAH	0.0997			
DENNE, KAREN	0.0541			
HOTTE, STEVE	0.0340			
DUPREE, DIANNA	0.0282			
ARMSTRONG, JULIE	0.0222			
LOKEY, TEB	0.0194			
SULLIVAN, LORA	0.0073			
VILLARREAL, LILLIAN	0.0040			
BAGOT, NANCY	0.0026			

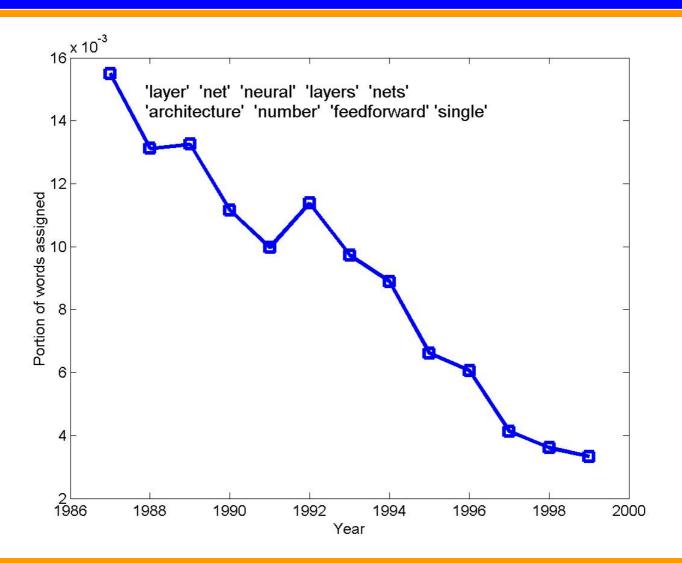
TOPIC 32	
WORD	PROB.
ANDERSEN	0.0241
FIRM	0.0134
ACCOUNTING	0.0119
SEC	0.0065
SETTLEMENT	0.0062
AUDIT	0.0054
CORPORATE	0.0053
FINANCIAL	0.0052
JUSTICE	0.0052
INFORMATION	0.0050
SENDER	PROB.
HILTABRAND, LESLIE	0.1359
WELLS, TORI L.	0.0865
DUPREE, DIANNA	0.0825
ARMSTRONG, JULIE	0.0316
DENNE, KAREN	0.0208
SULLIVAN, LORA	0.0072
NM.SZAFRANSKI@US.ANDERSEN.COM	0.0026
WILSON, DANNY	0.0016
HU, SYLVIA	0.0013
MATHEWS, LEENA	0.0012

ENRON Email: two topics not about Enron

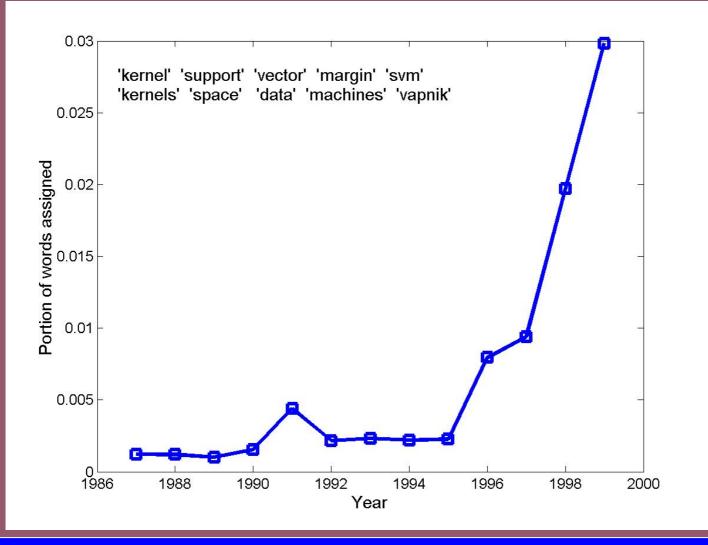
TOPIC 38	
WORD	PROB.
TRAVEL	0.0161
ROUNDTRIP	0.0124
SAVE	0.0118
DEALS	0.0097
HOTEL	0.0095
BOOK	0.0094
SALE	0.0089
FARES	0.0083
TRIP	0.0072
CITIES	0.0070
SENDER	PROB.
TRAVELOCITY MEMBER SERVICES	0.0763
BESTFARES.COM HOT DEALS	0.0502
<deals@bestfares.com></deals@bestfares.com>	0.0315
LISTS.COOLVACATIONS.COM	0.0151
CHEAP TICKETS	0.0111
EXPEDIA FARE TRACKER	0.0106
TRAVELOCITY.COM	0.0096
HOTDEALS@MAIL.HOTELRESNETWORK.COM	0.0088
LUCKY@ICELANDAIR.IS	0.0066
LASTMINUTE.COM	0.0051

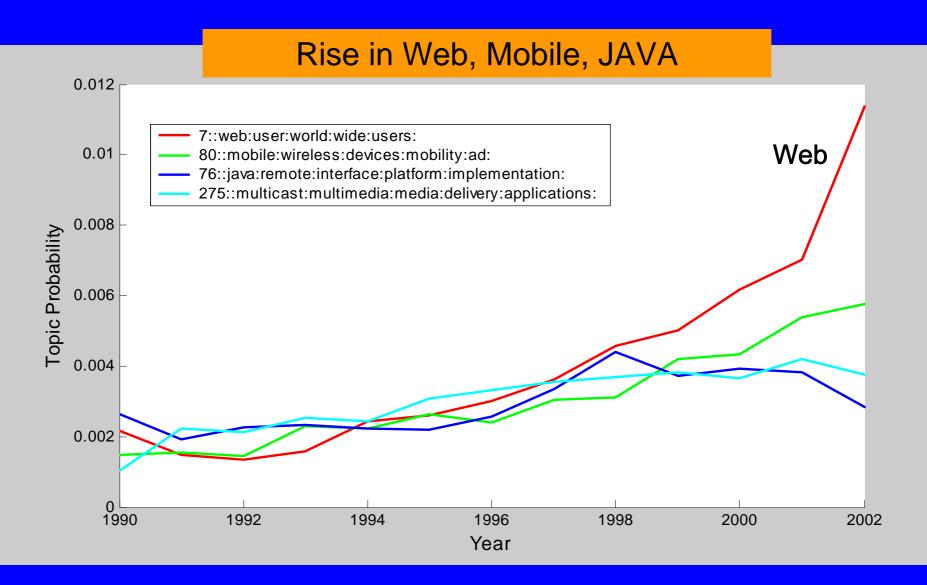
TOPIC 25	
WORD	PROB.
NEWS	0.0245
MAIL	0.0182
NYTIMES	0.0149
YORK	0.0128
PAGE	0.0095
TIMES	0.0090
HEADLINES	0.0079
BUSH	0.0077
DELIVERY	0.0070
HTML	0.0068
SENDER	PROB.
THE NEW YORK TIMES DIRECT	0.3438
<nytdirect@nytimes.com></nytdirect@nytimes.com>	0.0104
THE ECONOMIST	0.0029
@TIMES - INSIDE NYTIMES.COM	0.0015
JHILLIN@ENRON.COM	0.0011
AMAZON.COM DELIVERS BESTSELLERS	0.0009
NYTIMES.COM	0.0009
HYATT, JERRY	0.0008
NEWSLETTER_TEXT	0.0008
CHRIS LONG	0.0007

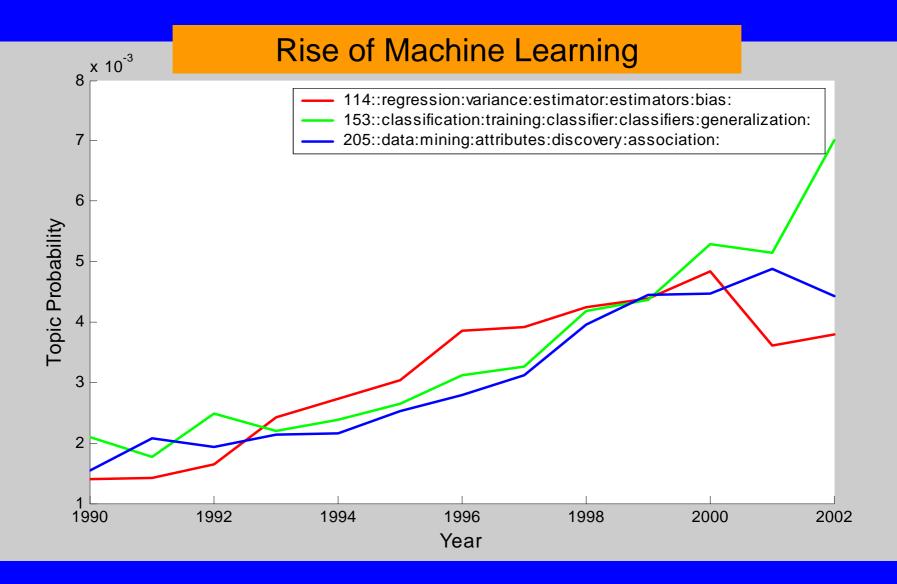
NIPS cold topic...

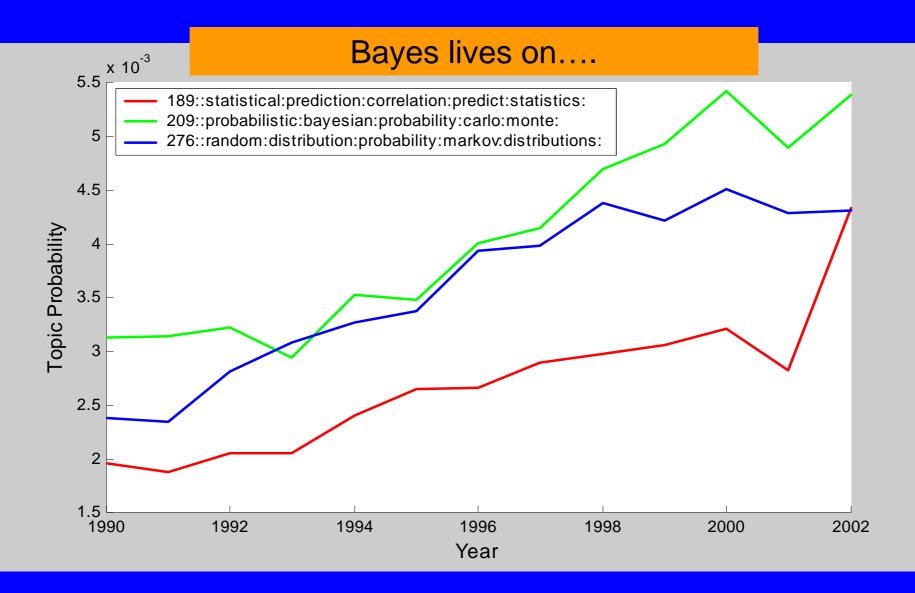


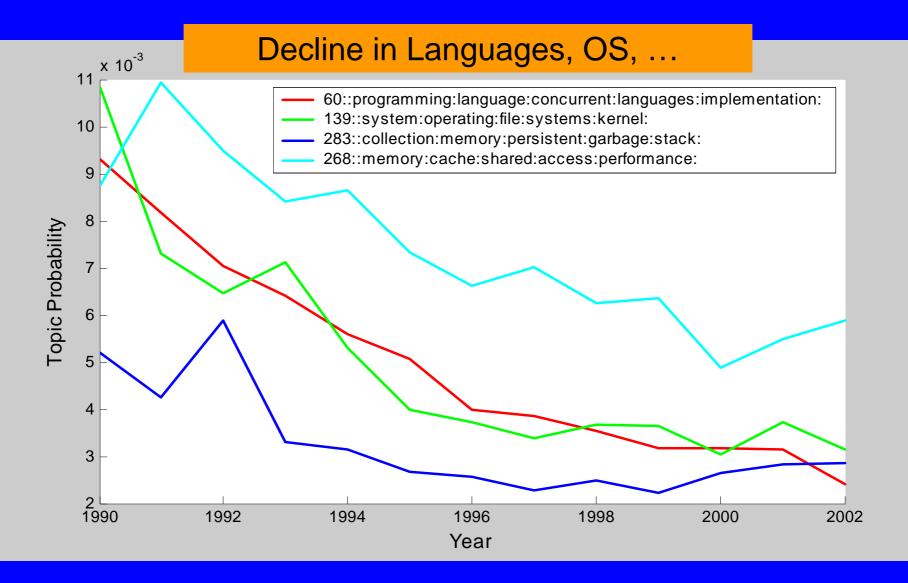
Very hot topic...SVM/Kernel Methods

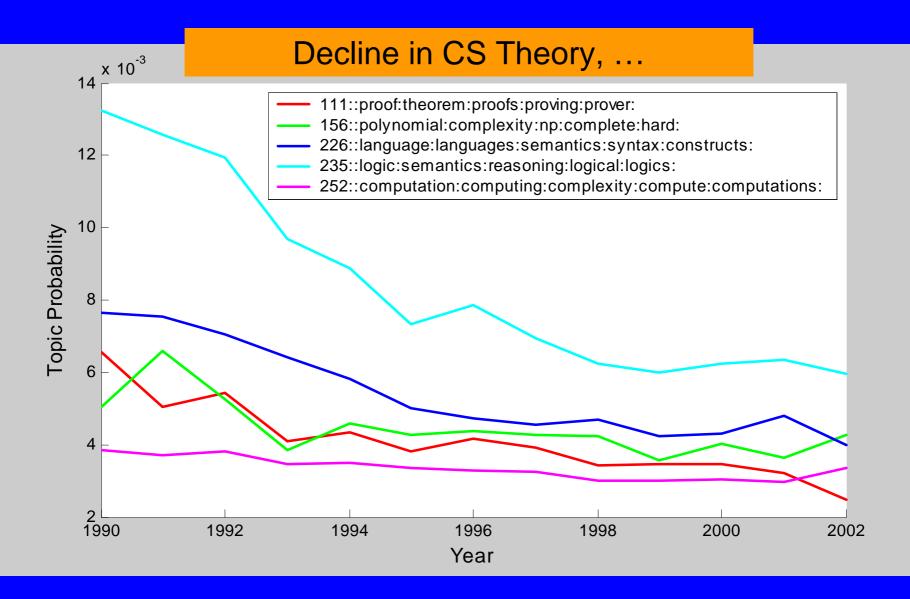


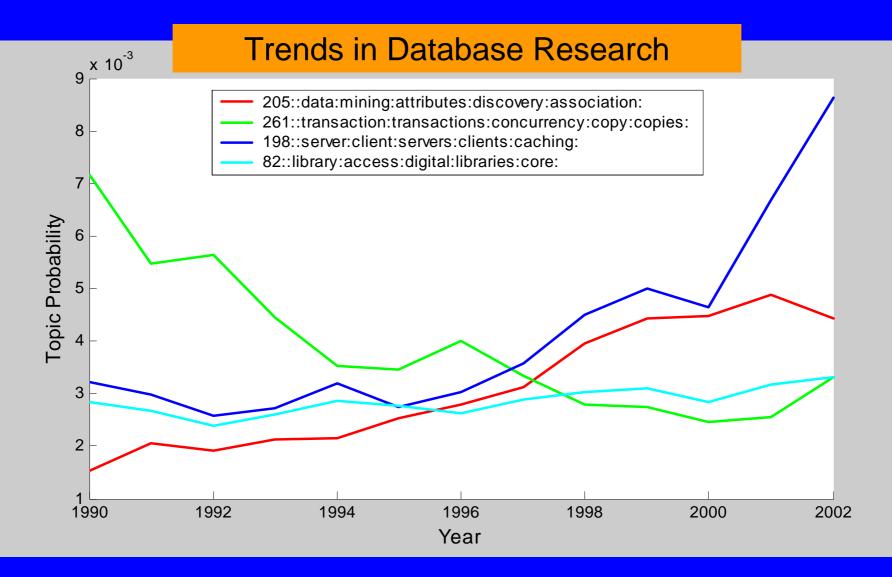


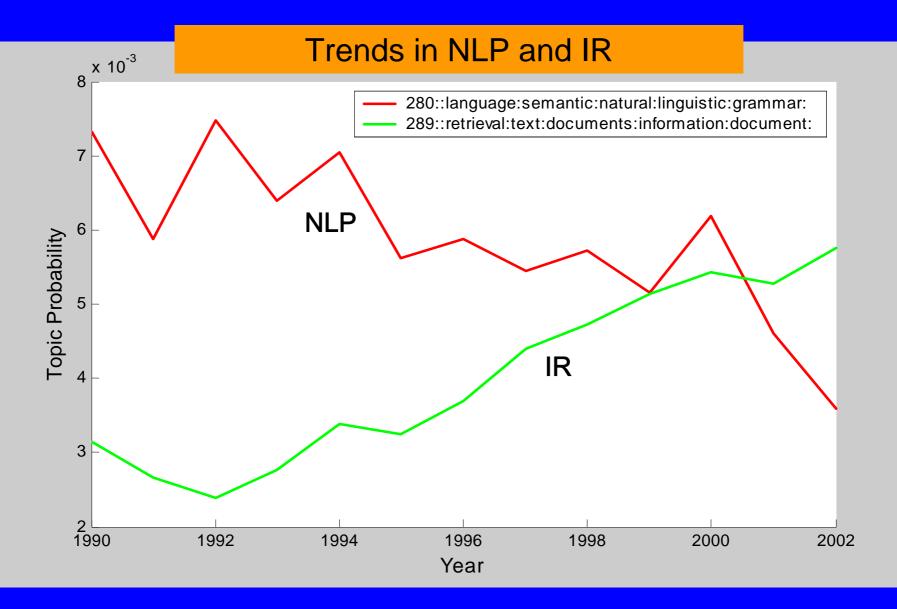


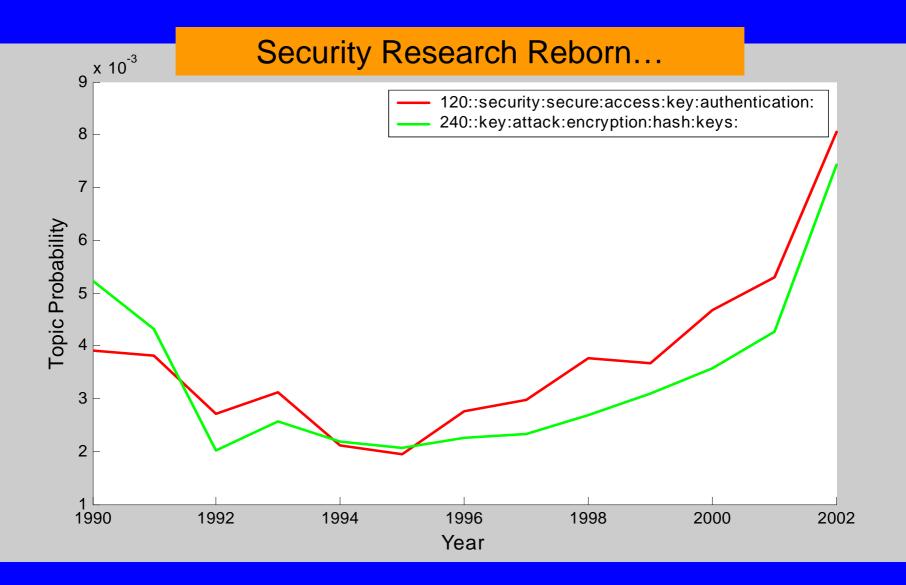


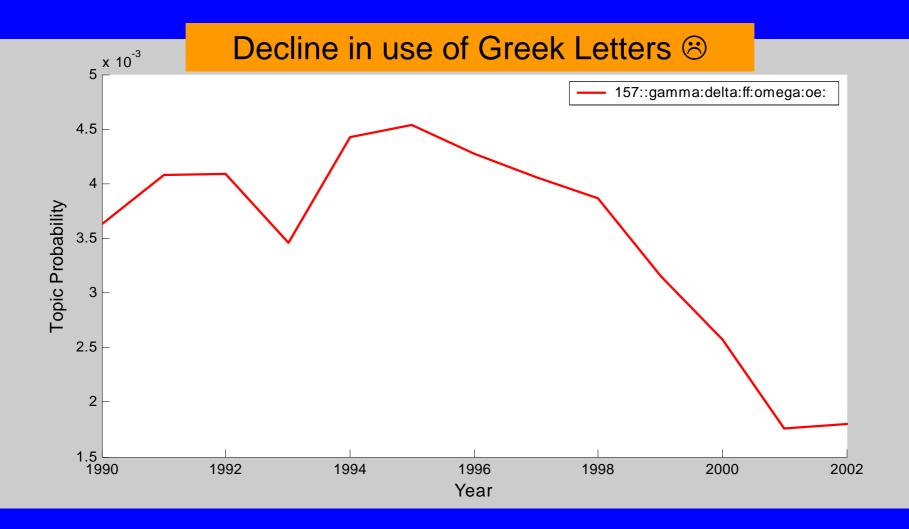












Extensions/Applications

- Software tool for summarizing text document collections
 - General query-answering capabilities
 - Who writes on what topics?
 - What is the "topic map"?
 - Applications
 - Federal funding databases
 - Enron email archives
 - •
- Prototype reviewer recommender system
 - Provide system with abstract of a paper
 - Returns list of potential reviewers, based on topic models

General Comments on Data Mining Software

- Spectrum of environments:
 - From restrictive-simple-efficient to general-complex-inefficient
- Examples
 - Data mining directly using SQL
 - High-level modeling standards
 - CRISP-DM
 - PMML (industry consortium)
 - SEMMA (SAS)
 - Public-domain packages
 - WEKA
 - General purpose data analysis environments
 - R, BUGS, MATLAB, etc
- Problems
 - Difficult to know in advance what a data analyst may wish to do
 - Packages are good at algorithms, but poor at process support

Final Comments

- Successful data mining requires integration/understanding of
 - statistics
 - computer science
 - the application discipline
- Current practice of data mining:
 - algorithmic-orientation
 - often focused on business applications
 - little support for iterative scientific process
 - considerable "hype" factor
- Research Directions
 - Interface of statistics and computer science
 - Scaling up statistical ideas to massive, non-traditional data

References

• Papers:

- www.ics.uci.edu/~smyth
- e.g., "Data mining: data analysis on a grand scale?", P. Smyth, (2000), Statistical Methods in Medical Research.
- Specific papers on curve clustering, author-topic models, etc
- Texts
 - Principles of Data Mining
 - D. J Hand, H. Mannila, P. Smyth, MIT Press, 2001
 - The Elements of Statistical Learning: Data Mining, Inference, and Prediction
 - Hastie, Tibshirani, and Friedman, Springer-Verlag, 2001
- Web sites
 - www.kdnuggets.com