

Programming Workflow with Triana Services

Matthew Shields, SC4DEVO Workshop, 12-15 July 2004

- Distributed Problem Solving Environment
 - Composing, Compiling and Running Applications
- Multiple problem domains
 - Signal Processing, Audio, Maths, Image Processing
- Intuitive to use
- Extensible
- Hide distributed computing details
- Middleware agnostic
 - P2PS, Web Services, Grid Computing

What is Triana?

Triana Workflow

Triana is flow based

- Data flow data arriving at component triggers execution
- Control flow control commands trigger execution
- Decentralised execution
 - Data or Control messages sent along communication "pipes" from sender to receiver causes receiver to execute
 - Synchronous or Asynchronous messaging (Implementation dependent)
 - Multiple inputs can block or trigger immediately (Component designer defined)

- Component is unit of execution
- Components are defined in XML files:
 - Similar to WSDL
 - Naming information
 - Input and output ports
 - Parameter information
- Why Components?
 - To simplify the application design process and to speed up application development
- The component model provides an infrastructure for the interaction of components

- Internal object based workflow graph representation
 - Taskgraph DCG
 - Tasks
 - Connections
- External XML representation
 - Simple XML syntax
 - List of participating task definitions
 - Parent/Child connection
 - Hierarchical (Compound components)
- Alternative Languages & Syntax
 - e.g. BPEL4WS
 - Available through pluggable readers & writers.

- No explicit language support for control constructs
- Loops and execution branching handled by components
 - Loop component controls loop over sub-workflow
 - Logical component control workflow branching
- Unlike BPEL4WS or similar
- Flexibility of control constraint based loops etc...
- Prevents workflow language feature creep

Current Triana Architecture

^ARDIFF

PRIFYSGOL

Matthew Shields, Cardiff University

Java GAT Prototype

GridLab GAT (www.gridlab.org)

GAP Overview

- Everything is a service!
 - Defined interfaces (WSDL)
 - Message based communication (SOAP)
- Java interface classes with concrete implementations that form the GAP bindings
- The core interface includes:
 - Service Creation and Discovery
 - Pipe Creation and Discovery
 - Message Communication
 - Information, Job Submission, Data Management

GridLab GAT & SAGA

- Grid Application Toolkit (GAT)
 - Written in C
 - API to shield application developers from implementation details
 - Adapters provide bindings to implementations
 - Triana & Catcus demonstration applications
- GAP is an adapter for the Java GAT (pending), providing:
 - Advertisement, Discovery, deployment and communication of services
 - GRMS job submission adapter
 - Data Management Services
- Simple API Grid Applications (SAGA)
 - GridLab input to this GGF RG

Web Service Discovery 1

 Triana allows users to query UDDI repositories

 Alternatively, users can import services directly from WSDL

🏙 Web Se	rvice Configuration	
Invocatio	n UDDI	
UDDI Inqui	ny http://uddi.xmethods.net/inquire]
UDDI Publi	sh https://uddi.xmethods.net/publish]
User ID		
Password		
		ОК
Find To	ols 🗵	
0.	Search name? B% OK Cancel	
Import f	rom Web Service 🛛 🔀	
Ş	WSDL Location	

Cancel

OK

Web Service Discovery 2

 Discovered/Imported Web Services are converted into Triana tools

> (service name = tool name) (input message parts = in nodes) (output message parts = out nodes) etc...

 Web Service tools are displayed in the user's Tool Tree (alongside local tools)

Connecting Workflows

- Web Service tools can be dropped onto the user's workspace and connected like local tools
- A workflow can contain both local and Web Service tools

🔁 Triana 📃 🗆 🗖 🔀				
<u>File Edit Tools Run Plugins Options Window Help</u>	7 StringGen			
	Enter String: 25	•		
	A StringViewer	×		
All Packages (default) 🔻 Untitled1	Value =	🗌 Append values		
P Common	77.0			
Comms StringGen ■		ОК		
Celsius2Farenh	stringViewer			
SequenceBuffer	1			

- Web Services are dynamically invoked using Apache AXIS (when input data is received)
- Three stages:
 - A static stub for the web service is generated using WSDL2Java
 - The stub is compiled using javac
 - The stub is dynamically loaded and invoked with the input data
- Generated/compiled stubs are cached
 - Saves regenerating/compiling stubs each invocation

Complex Data Types

- Users can build their own interface for creating/mediating between complex types
- Alternatively, Triana can dynamically generate an interface from the WSDL2Java generated bean class

Untitled1		
Untitled1	StrCountry France (iava lang String)	
WSTypeGen	Auto commit OK Cancel Apply	
	75 WSTypeViewer	X
	GetPopulationResult	
	Country France (java.lang.S	tring)
	iewer Date 2003 (java.lang.S	tring)
	Pop 60,180,529 (java.lang.S	tring)
	Auto commit OK Cancel Apply	

Matthew Shields, Cardiff University

Converting the Bible into French

Simple example:

- read_bible extracts verses from the bible
- BabelFish translates between English and French (and other languages)
- Result = The Bible

translated into French

🔁 StringViewer
Value = 🗌 Append values
genèse 1:1-5
1 dans Dieu commençant a créé le ciel et la terre.
2 et la terre était sans forme, et vide; et l'obscurité était sur le visage du profond. Et l'esprit de Dieu s'est déplacé sur le visage des eaux.
3 et Dieu a dit, laisse là d'être lumière: et il y avait lumière.
4 et Dieu a vu la lumière, cela qu'il était bon: et Dieu a divisé la lumière de l'obscurité.
5 et Dieu a appelé le jour léger, et l'obscurité qu'il a appelé Night. Et la soirée et le matin étaient le premier jour.
ОК

Distributed Workflow

- Distributed Triana Workflows
 - Based around Triana Groups i.e. aggregate tools
 - Each group can be distributed
 - Distribution policies:
 - HTC high throughput/task farming
 - Pipeline allow node to node communication
 - Each service can be a gateway to finer granularities of distribution:

Dynamic Distributed Workflow

The workflow is cloned/split/rewired to achieve the required distribution topology

Custom distribution scripts allow subworkflows to be distributed in parallel or pipelined

- Enable Distribution Standard Distribution
 Custom Distribution
 Common.Network.HTCParallel
 Common.Network.Peer2Peer
 OK Cancel
- Distribution scripts are standard Triana workflows, enabling users to create their own custom distributions

Deploy Remote Triana Services on Resources

- Service application installation
- Service execution
- Service discovery
- Mapping workflow to Triana Services
 - Workflow rewiring, XML definition for connections modified for remote location - sub-workflows duplicated
 - Data distribution, annotated sub-sections of taskgraph passed to resources

Deploying Services

- WSPeer Axis based WS framework
 - Standards based WSDL & SOAP
 - Automatically wrap Triana workflow as WS
 - Advertise & discovery using UDDI
 - Service communication with Axis

P2PS - socket based Peer-2-Peer framework

- Advertisement, discovery & communication in ad-hoc P2P networks
- Advertise & discovery using subnet multicast & rendezvous peers
- Service communication through socket based pipe

Deploying and Connecting To Remote Services

- Running services are automatically discovered via the GAP Interface, and appear in the tool tree
- User can drag remote services onto the workspace and connect cables to them like standard tools (except the cables represent actual JXTA/P2PS pipes)

GEO 600 Matched Filtering

- Background
 - Simplified inspiralling binary search algorithm
 - Compact binary stars orbiting each other in a close orbit
 - As the orbital radius decreases a characteristic chirp waveform is produced - amplitude and frequency increase with time until eventually the two bodies merge together

Computing

- Need 10 Gigaflops to keep up with real time data (modest search..)
 - Data 8kHz in 24-bit resolution (stored in 3 bytes) -> Signal contained within 1 kHz = 2000 samples/second
 - divided into chunks of 15 minutes in duration (i.e. 900 seconds) = 8MB

Algorithm

- Data is transmitted to a node
- Node initialises i.e. generates its templates (around 10000)
- fast correlates its templates with data

Fast Correlation in the Frequency Domain

Triana Service Job Submission

- Front end to GridLab GRMS Web Service
 - Job Submission Service interfaces with GRAM
- GAP Web Service binding + GSI Authentication

🍠 Java CoG Kit

- X509 Certificate handling
- Axis authentication & communication
- GRMS executes applications on GridLab Testbed
 - Heterogeneous hardware platforms
 - Default software Globus 2.4, GSISSH, cc, cvs, c++, F90, make, perl, mpicc

Service Composition Workflow

Applications/Collaborators

- GEO++ (GEO 600)
 - GW detector characterization
 - Veto studies
- GEO++ Monitors process the raw data for glitches, coherences, narrowband line sources, fluctuations in power in several frequency bands and record the results in appropriate database tables.
- Developed in C++ fast, stable, handle large amounts of data.
- Triana imports proxies for GEO++ monitors
 - Workflow of proxies executed by component
- Triana data mining units access database
- Visualisation units for results

Applications/Collaborators

- EDG/EGEE:
 - GENIUS Integration Triana running within GENIUS Portal (VNC Applet)
 - Workflow authoring import job definition (JDL)/export Condor DAG
- GriPhyN/Chimera
 - Workflow authoring import VDL, export DAX
- DIPSO
 - Multi-variate problems in Engineering
 - Choreographing web services
- GEMSS: (FP5 project)
 - Medical simulation
 - Application workflow, Choreographing web services

- Provenance electronic lab book
 - Part implemented reproduce results
 - Store workflow, data objects, transitions
- Component & service checking
 - Versioning is this the same version I used last time?
 - Verifying who provided this?
 - Validation does this do what I think it should?
- WSPeer hosting WS in P2P environment
 - WS-RF implementation in P2PS
 - UDDI discovery replaced by P2P discovery

Simple Application Monitoring System

^ARDIFF

PRIFYSGOL

UNIVEI

- SAMS implemented as Triana workflow
 - Each running service returns applicaton metric via GridLab Monitoring Service
 - QoS adaptive component retrieves metric and makes decisions about application
 - Job submission component start new service or releases existing service

Conclusion

Distinct workflow types

- Serial scientific workflow representing the algorithm
- Job submission workflow to submit grid jobs that deploy multiple Triana Services on remote resources
- Monitoring workflow examine & modify executing application

GAP API

- Web Service binding + GSI Grid Job Submission
- P2PS binding service discovery + service communication
- Combined to perform parallel scientific computation

Thanks!

The Astronomers: Prof. B Sathyaprakash, David Churches, Roger Philp and Craig Robinson

- The Triana team: Ian Wang, Andrew Harrison, Omer Rana, Diem Lam and Shalil Majithia
- All the partners in the GridLab project

Links

Information & Software

http://www.trianacode.org/

GridLab: A Grid Application Toolkit and Testbed - Microsoft Internet Explorer				
<u>File E</u> dit <u>V</u> iew F <u>a</u> vorite	s Iools Help 🧗			
🕞 Back 🔹 🌍 🕤 💌	📓 🏠 🔎 Search 🧙 Favorites 🜒 Media 🤣 🍛 🍓 🛄 🔝 🦓			
Address d http://www.gridla	ab.org/ 🕑 🔂 Go 🛛 Links 🎽			
GridLab				
Welcome	A Grid Application Toolkit and Testbed			
Our Project				
News	The GridLab project is funded by the European Commission under the Fifth Framework			
People	Programme of the Information Society Technology, contract number IST-2001-32133.			
Yellow Pages				
Directory	Ine <u>GridLab project</u> will develop a easy-to-use, flexible, generic and modular <i>Grid</i>			
Mail List	computing resources. The project is grounded by two principles. (i) the co-development			
Project	of infrastructure with real applications and user communities, leading to <i>working</i>			
Work Packages	scenarios, and (ii) dynamic use of grids, with self-aware simulations adapting to their			
Deliverables	changing environment.			
Software				
Publications	This timely and exciting project will join together the following institutions and			
Presentations	businesses:			
Collaborations				
Dissemination	 Poznan Supercomputing and Networking Center (PSNC), Poznan, Poland (President Countington) 			
Meetings	(Project Coordinator) Max Planck Institut fuer Gravitationenbysik (AEI), Golm/Potedam, Germany			
Past	 Max-Manux Institut ruer Gravitationsphysik (AEI), Golini/Potsualli, Germany Konrad-Zuse-Zentrum fuer Informationstechnik (ZIB) Berlin, Germany 			
Upcoming	Masaryk University, Brno, Czech Republic			
011				
😂 Our	🥥 Internet			

http://www.gridlab.org/