

Pegasus: Mapping complex applications onto the Grid

Ewa Deelman

Center for Grid Technologies USC Information Sciences Institute

Pegasus Acknowledgements

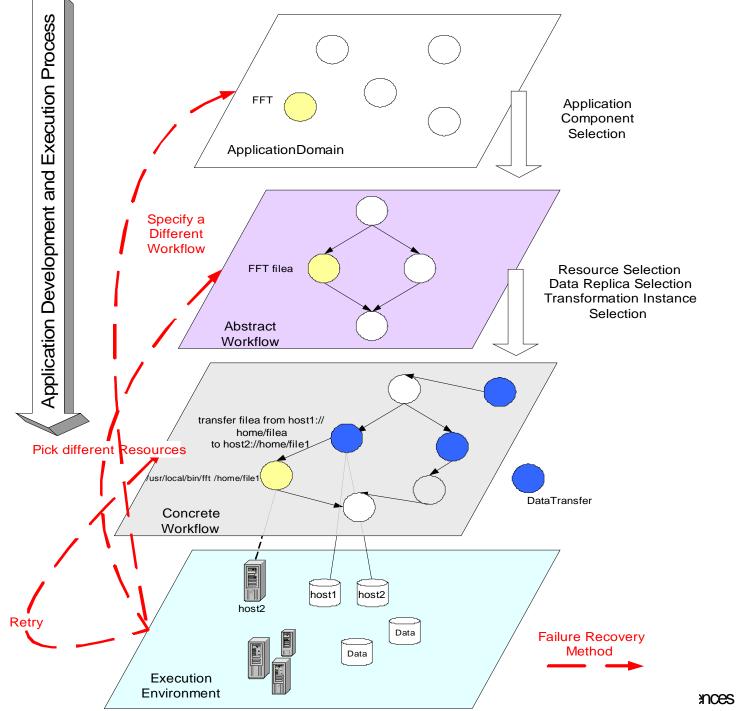
- Ewa Deelman, Carl Kesselman, Saurabh Khurana, Gaurang Mehta, Sonal Patil, Gurmeet Singh, Mei-Hui Su, Karan Vahi (Center for Grid Computing, ISI)
- James Blythe, Yolanda Gil (Intelligent Systems Division, ISI)
- http://pegasus.isi.edu
- Research funded as part of the NSF GriPhyN, NVO and SCEC projects.

Outline

- The GriPhyN project and Grid Applications
- Workflow Management in Grids
- Pegasus, Planning for Execution in Grids
 - Framework Description
 - Generation of Executable Workflows
- Applications Using Pegasus
- Future Research Directions

GriPhyN Data Grid Challenge

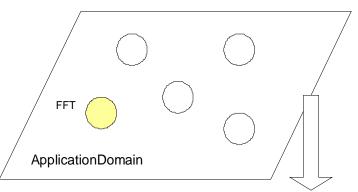
- Provide a framework that enables Virtual Organizations around the world to perform computationally demanding analysis of large, geographically distributed datasets.
- The Virtual Organizations are large and highly distributed
- The datasets are large, currently on the order of Terabytes and expected to grow to the level of 100s of Petabytes in the next decade
- Provide a seamless access to data: experimental raw data or processed data products
- Enable a user/application to ask for any domain-specific data, whether computed or not

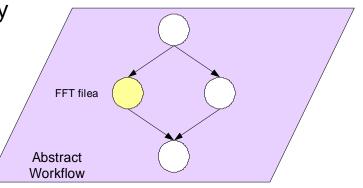

Concept of Virtual Data

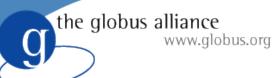
Ewa Deelman

- Increasing in the level of complexity
- Use of individual application components
- Reuse of individual intermediate data products (files)
- Description of Data Products using Metadata Attributes
- Execution environment is complex and very dynamic
 - Resources come and go
 - Data is replicated
 - Components can be found at various locations or staged in on demand
- Separation between
 - the application description
 - the actual execution description

nces Institute

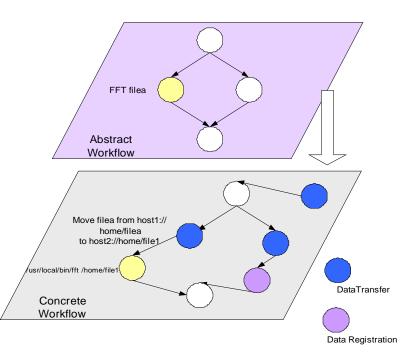

the globus alliance www.globus.org


Generating an Abstract Workflow


- Available Information
 - Specification of component capabilities
 - Ability to generate the desired data products

Select and configure application components to form an abstract workflow

- assign input files that exist or that can be generated by other application components.
- specify the order in which the components must be executed
- components and files are referred to by their logical names
 - Logical transformation name
 - Logical file name
 - Both transformations and data can be replicated



Generating a Concrete Workflow

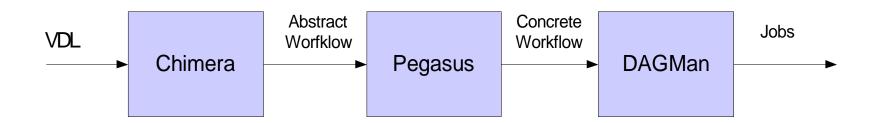
- Information
 - location of files and component Instances
 - State of the Grid resources
 - Select specific
 - Resources
 - Files
 - Add jobs required to form a concrete workflow that can be executed in the Grid environment
 - Data movement
 - Data registration
 - Each component in the abstract workflow is turned into an executable job

Why Automate Workflow Generation?

• <u>Usability</u>: Limit User's necessary Grid knowledge

- Monitoring and Directory Service
- Replica Location Service
- <u>Complexity</u>:
 - User needs to make choices
 - Alternative application components
 - Alternative files
 - Alternative locations
 - The user may reach a dead end
 - Many different interdependencies may occur among components

• Solution cost:


- Evaluate the alternative solution costs
 - Performance
 - Reliability
 - Resource Usage

• <u>Global cost</u>:

- minimizing cost within a community or a virtual organization
- requires reasoning about individual user's choices in light of other user's choices

- Build an abstract workflow based on VDL descriptions (Chimera)
- Build an executable workflow based on the abstract workflows (Pegasus)
- Execute the workflow (Condor's DAGMan)

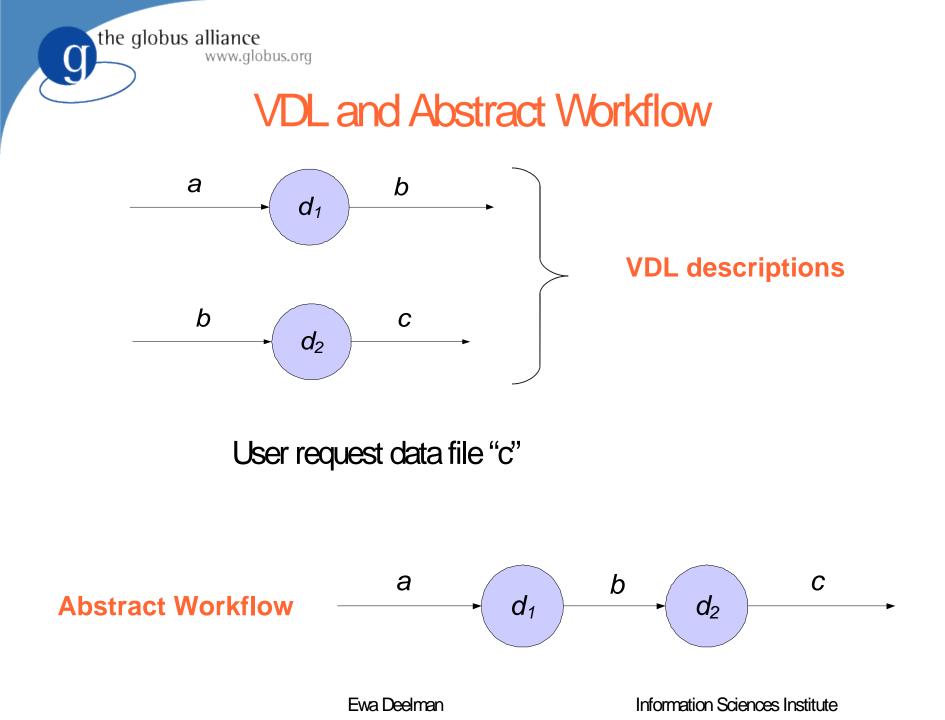
Ewa Deelman

Chimera: Creating Abstract Workflows

- Developed at ANL (Foster, Voeckler, Wilde)
- Chimera's Virtual Data Language (VDL) allows for the description of an abstract workflow
- Transformations:
 - general description of the transformation applied to data, use logical transformation name

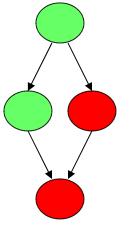
TR galMorph(in redshift, in pixScale, in zeroPoint, in Ho, in om, in flat, in image, out galMorph) {}

Chimera : Creating Abstract Workflows


- Derivations are instantiations of TRs
 - Identify particular logical input and output file names
 - Identify actual parameters

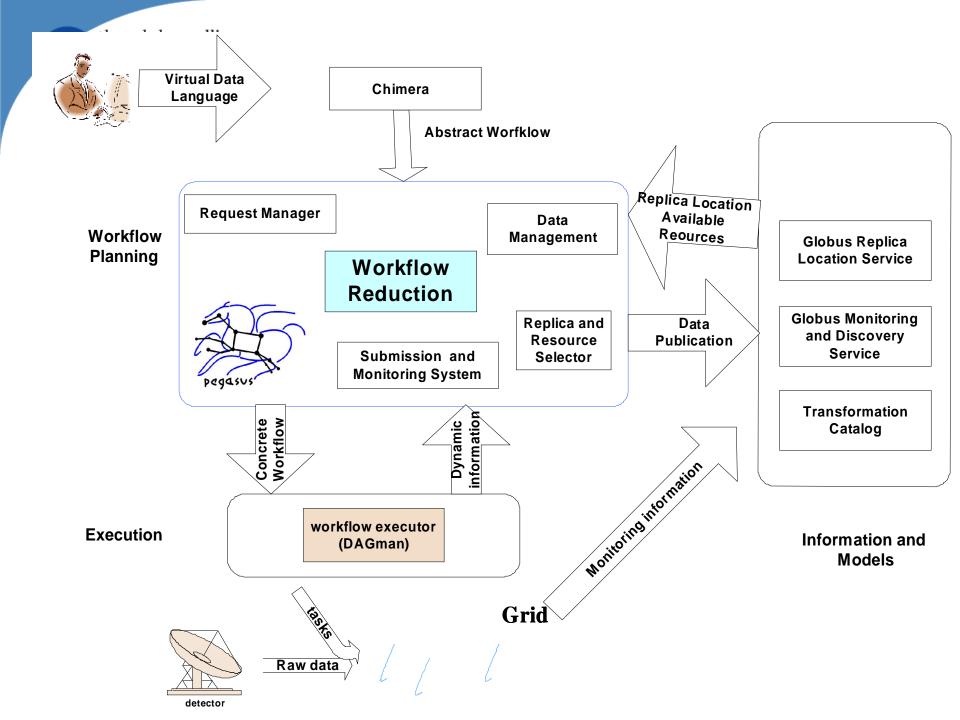
```
DV d1->galMorph(
redshift="0.027886",
image=@{in:"NGP9_F323-0927589.fit"},
pixScale="2.831933107035062E-4",
zeroPoint="0",
Ho="100",
om="0.3",
flat="1",
galMorph=@{out:"NGP9_F323-0927589.txt"} );
```


Abstract Workflow Generation


- Definitions for transformations and derivations are stored in Chimera's Database
- Database can be browsed
- User queries Chimera giving it a logical filename

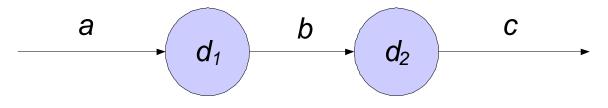
Condor's DAGMan

- Developed at UW Madison (Livny)
- Executes a concrete workflow
- Makes sure the dependencies are followed
- Execute the jobs specified in the workflow
 - Execution
 - Data movement
 - Catalog updates
- Provides a "rescue DAG" in case of failure

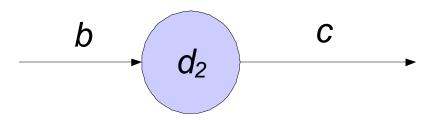


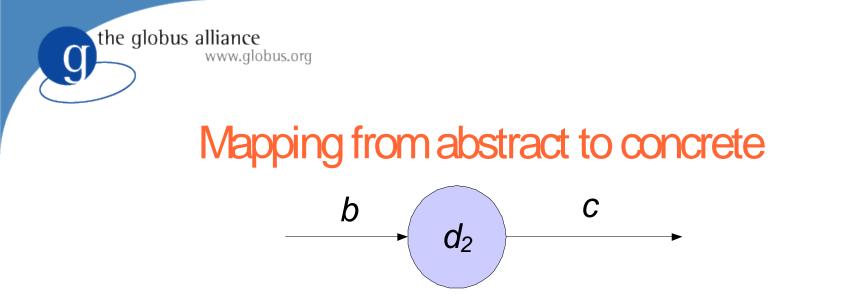
- **J**
- Maps from abstract to concrete workflow
 - Algorithmic and Al-based techniques
- Automatically locates physical locations for both components (transformations) and data
- Finds appropriate resources to execute
- Reuses existing data products where applicable
- Publishes newly derived data products
 - Chimera virtual data catalog
 - Provides provenance information

Ewa Deelman

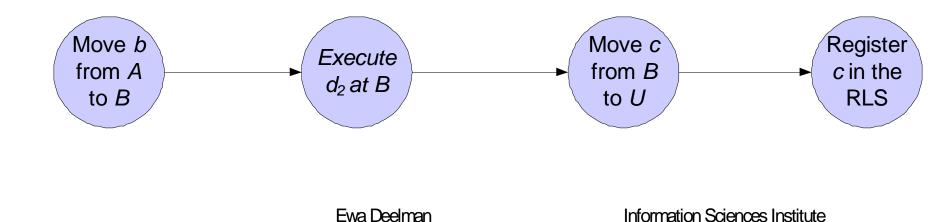

Information Components Used by Pegasus

- Globus Monitoring and Discovery Service (MDS)
 - Locates available resources
 - Finds resource properties
 - Dynamic: load, queue length
 - Static: location of gridftp server, RLS, etc
- Globus Replica Location Service
 - Locates data that may be replicated
 - Registers new data products
- Transformation Catalog
 - Locates installed executables




Example Workflow Reduction

Original abstract workflow



• If "b" already exists (as determined by query to the RLS), the workflow can be reduced

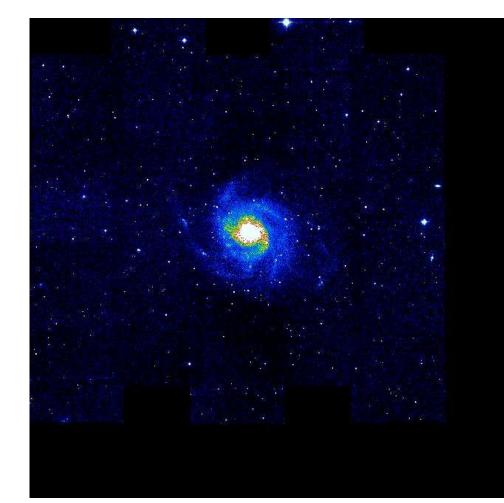
 Query RLS, MDS, and TC, schedule computation and data movement

Applications Using Chimera, Pegasus and DAGMan

- GriPhyN applications:
 - High-energy physics: Atlas, CVIS (many)
 - Astronomy: SDSS (Fermi Lab, ANL)
 - Gravitational-wave physics: LIGO (Caltech, UVM)
- Astronomy:
 - Galaxy Morphology (NCSA, JHU, Fermi, many others, NVO-funded)
- Biology
 - BLAST (ANL, PDQ-funded)
- Neuroscience
 - Tomography for Telescience(SDSC, NIH-funded)

Pegasus interfaces

- Main interface: command-line interface
- Applications can also be integrated with a portal environment
- Demonstrated the portal at SC 2003
 - LIGO-gravitational-wave physics
 - Montage-astronomy
- Much of the portal is application-independent

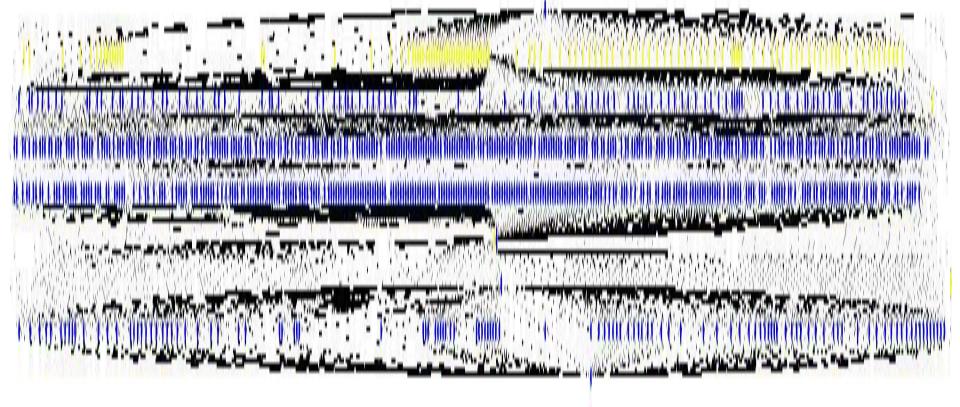

Ewa Deelman

the globus alliance www.globus.org

Montage (NASA and NVO)

- Deliver science-grade custom mosaics on demand
- Produce mosaics from a wide range of data sources (possibly in different spectra)
- User-specified parameters of projection, coordinates, size, rotation and spatial sampling.

Montage



Mosaic created by Pegasus based Montage from a run of the M101 galaxy images on the Teragrid.

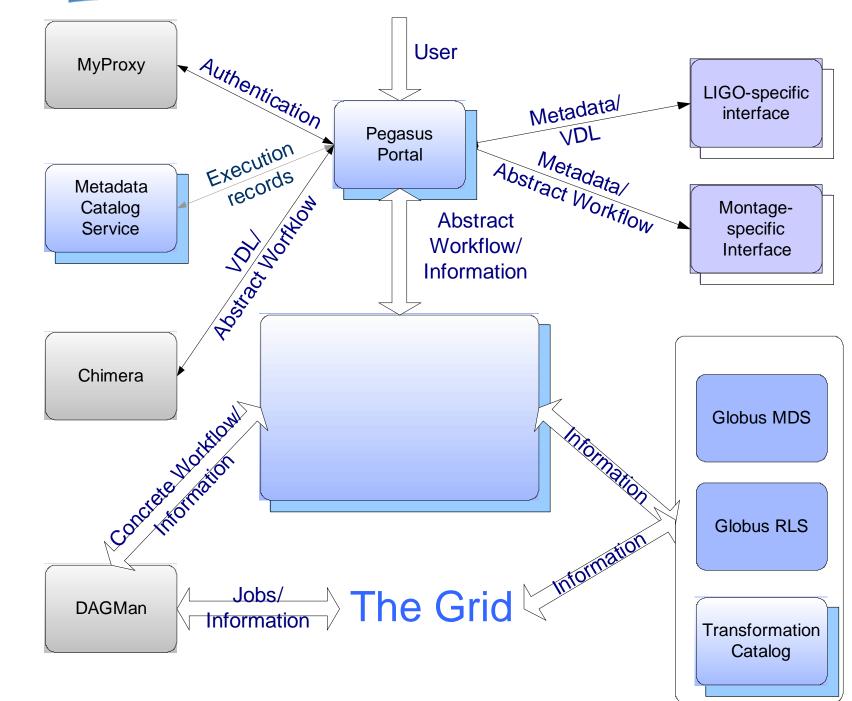
Ewa Deelman

the globus alliance www.globus.org

Small Montage Workflow

~1200 nodes

Ewa Deelman


Montage Acknowledgments

- Bruce Berriman, John Good, Anastasia Laity, Caltech/IPAC
- Joseph C. Jacob, Daniel S. Katz, JPL
- http://montage.ipac. caltech.edu/
- Testbed for Montage: Condor pools at USC/ISI, UW Madison, and Teragrid resources at NCSA, PSC, and SDSC.

Montage is funded by the National Aeronautics and Space Administration's Earth Science Technology Office, Computational Technologies Project, under Cooperative Agreement Number NCC5-626 between NASA and the California Institute of Technology.

Ewa Deelman

Simplified View of SC 2003 Portal

ser Mei-Hui Su 508922

Enter Ligo Job Para	meters	
uto Submit		
Start GPS time :		H1:729277151,H2:729298004,L1:729333196
End GPS time :		H1:734365561,H2:734359306,L1:734359225
Alpha Value :	0	(0-2pi)
Delta Value :	0	(+pi/2 to -pi/2)
Instrument :	H1 💌	
Start Freq :		(200-500)
Freq Band :		(0.0-1.0)
Step :		

 the globus alliance www.globus.org

 home | sign in/out | about
 Pcgasus Grid Portal

 Monitor Sites
 Submit Jobs
 View Jobs
 User Profile
 Authenticate
 Information

View Submitted Jobs

Choose Level of Detail.. 🗙

				T					1	T
Project	Job Name	Creator	Job Status	Execution Pool	Time Submitted	Time Completed	Total Nodes	Completed Nodes	Submit Files	DA(Imag
Montage	<u>m16 0.4 13</u>	Mei-Hui Su 508922	DONE	isi_condor_montage	2004.01.07 14:47:32	2004.01.07 14:59:00	43	43	<u>DAG</u> <u>Files</u>	DAC Imag
Montage	<u>coalSack 0.4 1</u>	Mei-Hui Su 508922	DONE	isi_condor_montage	2003.12.24 20:38:30	2003.12.24 20:51:09	48	48	DAG Files	DAC Imag
Montage	<u>tarantula nebula 0.3 1</u>	Mei-Hui Su 508922	DONE	isi_condor_montage	2003.12.24 11:32:31	2003.12.24 11:54:42	43	43	DAG Files	DAC Imag
	CoalSack 0.3 2	Mei-Hui Su 508922	DONE	isi_condor_montage	2003.12.23 13:37:11	2003.12.23 13:49:52	22	22	DAG Files	DAC Imag
<			24	III				194 		

	and the second se	and the second se	1000	100 million (100 m	and the second se	the second second second
	S Property in	A 1474	Service 1	the second se	b Det	Contraction of the local division of the loc
- 15			11111			
	1 1 1 1 1					

Job Name	Job Status	Time Submitted	Time Completed	Total Nodes	Completed Nodes	Submit Files	Dag Image	Time Chart	Host Chart
m16_0.4_13	DONE		2004.01.07 14:59:00	<mark>4</mark> 3	43	DAG Files	DAG Image	<u>Time</u> <u>Chart</u>	<u>Host</u> <u>Chart</u>

Node Type	Unsubmitted	Pending	Active	Successful	Failed	Total
Transfer	0	0	0	10	0	10
Registration Nodes	0	0	0	1	0	1
Compute Nodes	0	0	0	32	0	32
InterPool Nodes	0	0	0	0	0	0
Total Nodes	0	0	0	43	0	43

Node ID	Node Type	Node Status	Node Start Time	Node End Time	.in File	.sul file	erı file	1.25
isi_condor_montage_create_dir	COMPUTE	DONE	2004.01.07 14:47:32	2004.01.07 14:47:49	.in File	.sub File	.err File	1.5.5.5
rc_tx_mProject_ID000001_0	TRANSFER	DONE	2004.01.07 14:48:12	2004.01.07 14:48:42	<u>.in</u> File	.sub File	err File	-
rc_tx_mProject_ID000002_0	TRANSFER	DONE	2004.01.07 14:48:12	2004.01.07 14:48:42	<u>.in</u> File	sub File	err File	1.
rc_tx_mProject_ID000003_0	TRANSFER	DONE	2004.01.07 14:48:12	2004.01.07 14:48:42	<u>.in</u> File	sub File	.err File	
rc_tx_mProject_ID000004_0	TRANSFER	DONE	2004.01.07 14:48:22	2004.01.07 14:48:52	in	1000	.err	.01
rc_tx_mProject_ID000005_0	TRANSFER	DONE	2004.01.07 14:48:22	2004.01.07 14:48:42	in File	.sub File	err File	A 114
			2004 01 07	2004 01 07	in	sub	err	01

Ewa Deelman

```
# GRIPHYN VDL SUBMIT FILE GENERATOR
# DAG : test, Index = 0, Count = 1
# SUBMIT FILE NAME : dag/mProject ID000005.sub
universe = globus
globusscheduler = columbus.isi.edu/jobmanager-condor
output = mProject ID000005.out
transfer output = true
error = mProject ID000005.err
transfer error = true
globusrs1 = (jobtype=single)
log = test-0.log
arguments = -n mProject -N null /nfs/v6/mei/j1/Montage2/Montage v2.0/bin/mProject
                                                                    2mas
copy to spool = false
executable = /nfs/v6/mei/j1/VDS/vds-1.2.0/bin/kickstart
notification = NEVER
periodic release = (NumSystemHolds <= 3)
periodic remove = (NumSystemHolds > 3)
remote initialdir = /nfs/cgt-scratch/griphyn/montage/montage exec dir/isi condor/test 2
transfer executable = false
+VDS version = "1.2.0"
+VDS flowName = "test"
+VDS flowTimestamp = "2004-01-07T14:47:12-08:00"
+VDS jobclass = 1
+VDS jobid = "mProject ID000005"
+VDS execPool = "isi condor montage"
queue
# END OF SUBMIT FILE
```


Conclusions

- Pegasus maps complex workflows onto the Grid
- Uses Grid information services to find resources, data and executables
- Reduces the workflow based on existing intermediate products
- Used in many applications
- Part of GriPhyN's Virtual Data Toolkit

Ewa Deelman

Future Directions

- Incorporate AI-planning technologies in production software (Virtual Data Toolkit)
- Investigate various scheduling techniques
- Investigating fault tolerance issues
 - Selecting resources based on their reliability
 - Responding to failures
- http://pegasus.isi.edu