
7/13/2004 SC4DEVO

Office of Science

U.S. Department of Energy

Simplified Grid Application
Development in Python

Keith Jackson and David Konerding
Lawrence Berkeley National

Laboratory

7/13/2004 SC4DEVO

Office of Science

U.S. Department of Energy

Overview

• Globus Project and Toolkit
• Python Grid Project Goals
• Why Python?
• Pre-Web Service Python Grid Support
• Web service/WS-RF Python Support
• SAGA (Simplified API for Grid

Applications)
• Visual Programming

7/13/2004 SC4DEVO

Office of Science

U.S. Department of Energy

Globus Project™

7/13/2004 SC4DEVO

Office of Science

U.S. Department of Energy

Globus Project™

• The Globus Toolkit® is an open source
software base for building Grid middleware
and applications
– ANL and ISI
– Implementation began in 1996

• Developed standard protocols and APIs to
enable interoperability, portability, and shared
infrastructure

• Global Grid Forum provides a venue for Grid
standardization

7/13/2004 SC4DEVO

Office of Science

U.S. Department of Energy GT2
Key Protocols

• The Globus Toolkit v2 (GT2)
centers around four key protocols
– Connectivity layer:

• Security: Grid Security Infrastructure (GSI)
– Resource layer:

• Resource Management: Grid Resource
Allocation Management (GRAM)

• Information Services: Grid Resource
Information Protocol (GRIP)

• Data Transfer: Grid File Transfer Protocol
(GridFTP)

• Also key collective layer protocols
– Info Services, Replica Management, etc.

Courtesy of the Globus Project™

7/13/2004 SC4DEVO

Office of Science

U.S. Department of Energy

Python Grid Project

7/13/2004 SC4DEVO

Office of Science

U.S. Department of Energy

Python Grid Project Goals

• Provide a high-level object-oriented
software development kit for building
Collaborative and Grid applications

• Provide tools to scientists in
environments that they are familiar with.

• Support the rapid prototyping of Grid
and Collaborative applications.

• Support the ability to integrate legacy
codes easily into Grid applications

7/13/2004 SC4DEVO

Office of Science

U.S. Department of Energy

Why Python?

• Easy to learn/read high-level scripting language
– Very little syntax
– Straightforward object orientation

• A large collection of modules to support common
operations, e.g., networking, HTTP, SMTP, LDAP,
XML, Web Services, etc.

• Excellent for “gluing” together existing codes
– Many automated tools for interfacing with

C/C++/Fortran (SWIG and f2py are most popular)
• Support for platform independent GUI components
• Runs on all popular operating systems, e.g., UNIX,

Win32, MacOS

7/13/2004 SC4DEVO

Office of Science

U.S. Department of Energy

Pre-Web Services Python Grid
Toolkit

Pre-Web Services refers to GT2.x
and pre-WS GT3.x components

7/13/2004 SC4DEVO

Office of Science

U.S. Department of Energy

pyGlobus Technical Approach

• Wrap the existing Globus Toolkit code.
– The Python CoG Kit (pyGlobus) is a series of

Python extension modules and higher-level
abstractions.

– Uses SWIG (http://www.swig.org) to automatically
generate wrappers around GT2.

• Minimizes changes to the Python CoG Kit when GT
changes.

• Isolates end users from these changes.

Map GT abstractions into Python constructs.
– Globus errors are mapped to pyGlobus

exceptions.
– Data structures with many associated functions

become classes with methods

7/13/2004 SC4DEVO

Office of Science

U.S. Department of Energy

pyGlobus Technical Approach

• Reduce tedious and error prone programming
by hiding much of the complexity of GT2
behind object-oriented abstractions.
– hide the underlying memory management
– automate module activation/deactivation.

• Work with application groups to develop
components that encapsulate high-level
tasks.
– Move a file between two GridFTP servers
– Stage a data set, submit a computation, move the

output data to a GridFTP server

7/13/2004 SC4DEVO

Office of Science

U.S. Department of Energy

Architecture

Native Lang
Component

Shadow Class

Presentation

Usability

Task-based

Application

Component written in native program-
ming language (C, C++, etc).
eg. globus_ftp_client, gram_client, …

1 to 1 mapping (eg. via SWIG)

map onto Python concepts/constructs

apply the 80/20 rule for defaults
to narrow interface

aggregate components
for a common task

combine tasks
in an application

Py
th

on

7/13/2004 SC4DEVO

Office of Science

U.S. Department of Energy

pyGlobus Components

• Basic services are provided accessing:
– Security (security)
– Remote job submission and
monitoring (gramClient)
– Secure high-performance network IO (io)
– Protocol independent data transfers (gassCopy)
– High performance Grid FTP transfers (ftpClient)
– Support for building Grid FTP servers (ftpControl)
– Remote file IO (gassFile)

7/13/2004 SC4DEVO

Office of Science

U.S. Department of Energy

pyGlobus Components

• Applications and Utilities:
– All apps and utilities are instrumented using the

NetLogger toolkit to support performance analysis
(www-didc.lbl.gov/NetLogger/)

– Full GridFTP Server
• Used stand-alone or embedded in a Python application
• Includes support for MD5 checksumming

– First implementation to do so

– GUI GridFTP client
– pyglobusrun and pyglobus-url-copy

• Same interface as the GT2 tools, but instrumented with
NetLogger

– GUI widgets for building domain specific
applications

7/13/2004 SC4DEVO

Office of Science

U.S. Department of Energy

C Submission example
Job creation

char *callback_contact = GLOBUS_NULL;
char *job_contact = GLOBUS_NULL;
globus_i_globusrun_gram_monitor_t monitor;
int err;
monitor.done = GLOBUS_FALSE;
monitor.verbose=verbose;
globus_mutex_init(&monitor.mutex, GLOBUS_NULL);
globus_cond_init(&monitor.cond, GLOBUS_NULL);

err = globus_module_activate(GLOBUS_GRAM_CLIENT_MODULE);
if(err != GLOBUS_SUCCESS)
{ … }
err = globus_gram_client_callback_allow(

globus_l_globusrun_gram_callback_func,
(void *) &monitor,
&callback_contact);

if(err != GLOBUS_SUCCESS)
{ … }

err = globus_gram_client_job_request(“clipper.lbl.gov”,
“&(executable=‘/bin/sleep’)(arguments=15)’,

GLOBUS_GRAM_PROTOCOL_JOB_STATE_ALL,
callback_contact, &job_contact);

if(err != GLOBUS_SUCCESS)
{ … }

globus_mutex_lock(&monitor.mutex);
while(!monitor.done) {

globus_cond_wait(&monitor.cond, &monitor.mutex);
}

globus_mutex_unlock(&monitor.mutex);
globus_gram_client_callback_disallow(callback_contact);
globus_free(callback_contact);

globus_mutex_destroy(&monitor.mutex);
globus_cond_destroy(&monitor.cond);

Callback for state changes

callback_func(void *user_arg, char *job_contact,
int state, int errorcode) {

globus_i_globusrun_gram_monitor_t *monitor;
monitor = (globus_i_globusrun_gram_monitor_t *)

user_arg;
globus_mutex_lock(&monitor->mutex);
monitor->job_state = state;
switch(state) {
case GLOBUS_GRAM_PROTOCOL_JOB_STATE_PENDING:

globus_libc_printf(
"GLOBUS_GRAM_PROTOCOL_JOB_STATE_PENDING\n");
break;

case GLOBUS_GRAM_PROTOCOL_JOB_STATE_FAILED:
globus_libc_printf(
"GLOBUS_GRAM_PROTOCOL_JOB_STATE_FAILED\n");
monitor->done = GLOBUS_TRUE;
break;

case GLOBUS_GRAM_PROTOCOL_JOB_STATE_DONE:
globus_libc_printf(
"GLOBUS_GRAM_PROTOCOL_JOB_STATE_DONE\n");
monitor->done = GLOBUS_TRUE;
break;

}
globus_cond_signal(&monitor->cond);
globus_mutex_unlock(&monitor->mutex);

}

7/13/2004 SC4DEVO

Office of Science

U.S. Department of Energy

Python Job Submission Example

Creating a job
lock = Condition()
done = GLOBUS_FALSE
try:

gramClient = GramClient.GramClient()
callbackContact = gramClient.set_callback(func, (lock, done))
rslSpec = RSL(“/bin/sleep”, **{‘argument’:15}
jobContact = gramClient.submit_request(“clipper.lbl.gov”,rslSpec,

GramClient.JOB_STATE_ALL)
except GramClient.GramClientException, ex:

print ex.msg
lock.acquire()
while done != GLOBUS_TRUE:

lock.wait()

Callback for state changes
def func(arg, contact, state, error):

lock, variable = arg
lock.acquire()
if state == GramClient.JOB_STATE_PENDING:

print "Job is pending"
elif state == GramClient.JOB_STATE_FAILED:

print "Job is active“
variable = GLOBUS_TRUE

elif state == GramClient.JOB_STATE_DONE:
print "Job is done“
variable = GLOBUS_TRUE

lock.notify()
lock.release()

7/13/2004 SC4DEVO

Office of Science

U.S. Department of Energy Visual Workflow Job
Submission

7/13/2004 SC4DEVO

Office of Science

U.S. Department of Energy

pyGlobus Status

•Releases available in NMI, VDT, and GT3.x
(standard BSD license)
•Current development code available from CVS
•Used by several Grid projects

•LIGO moves production terabytes using
GridFTP modules
•Access Grid client software

7/13/2004 SC4DEVO

Office of Science

U.S. Department of Energy

Future Plans

• Continue to support GT2.x users
• Provide a stable migration path to Grid

Services via SAGA
• Use SWIG more effectively to reduce

hand-built wrapping code

7/13/2004 SC4DEVO

Office of Science

U.S. Department of Energy

Python Web and Grid Services
Support

7/13/2004 SC4DEVO

Office of Science

U.S. Department of Energy

Grid Evolution

• GT2 implementations based on a
heterogeneous protocol base
– Used standard protocols where applicable

• TLS, LDAP, HTTP, etc.
– Invented new protocols

• GRAM, GRIP, GSI, GridFTP

• Along the way problems were discovered:
– Lack of compatibility between versions

• Protocols kept changing
– Protocols (and APIs) were

• Poorly documents
• Sometimes only defined in the code

7/13/2004 SC4DEVO

Office of Science

U.S. Department of Energy

Grid Evolution

• Ubiquitous adoption demands open, standard
protocols
– Internet and Web as guides
– Enables innovation/competition on end

points
• At the same time industry was beginning to

standardize on Web Service protocols
– Could provide a common protocol base for

the Grid, but …
• Led to the adoption of Web Services as the

underlying framework for Grid Services

7/13/2004 SC4DEVO

Office of Science

U.S. Department of Energy

pyGridWare

• Developing a full Open Grid Services
Architecture implementation

• Specifically addressing interoperability with
WS-RF implementations including Globus
Toolkit, IBM, and Fujitsu

• ZSI library is used for
– Client proxy and server stub generation
– SOAP parsing

• Twisted application server for the hosting
environment
– Also support standalone Grid Services

7/13/2004 SC4DEVO

Office of Science

U.S. Department of Energy

pyGridWare Client Bindings

• Builds on the automatic wsdl2python
generator we’ve built to use with ZSI

• Security support automatically added
into generated code

7/13/2004 SC4DEVO

Office of Science

U.S. Department of Energy pyGridWare Web and Grid
Services Server-Side Support

• Provides a container to host Grid
Services
– Based on the Twisted project

(http://twistedmatrix.com/products/twisted)
– Provides a base-class to encapsulate all

required Grid Service functionality
– Will support exposing legacy

Fortran/C/C++ codes as Python
components

– Will provide automatic server stub
generation from WSDL

7/13/2004 SC4DEVO

Office of Science

U.S. Department of Energy

Current Status

• Code released under the standard BSD license
• Client bindings are included in the Globus 3.2 release

– Includes interoperable message level security
– Working to integrate the common Web Service code back

into the ZSI project
– Still working on the border cases with complex type

encoding and interoperability with non-BP compliant
services

• Server code exists in beta form but has not been
officially released

• Refactoring the code base to reflect the recent
change from OGSI to WS-RF
– WS-RF is easier for us since it uses less “obscure” features

of XML Schema

7/13/2004 SC4DEVO

Office of Science

U.S. Department of Energy

Future Plans

• Finish reworking all of our OGSI code to
support WS-RF
– Initial investment in basic Python WS

tooling makes this easier
– Uses fewer XMLSchema “features”

• Plan to have at least client code ready
for the Globus Toolkit 4.0 release

7/13/2004 SC4DEVO

Office of Science

U.S. Department of Energy

SAGA (Simplified API For Grid
Applications)

Making the grid more accessible
to scientists

7/13/2004 SC4DEVO

Office of Science

U.S. Department of Energy

GGF SAGA Research Group

• Existing toolkits and services have a steep learning
curve

• SAGA aims to develop an ultra-simplified API to Grid
toolkits

• Keith Jackson originally explored this concept in
pyGlobus and later recognized the API could be
implemented in multiple languages (which helps
when migrating from “test” codes in scripting
languages to “production” codes in C and Fortran)

• Common operations with default settings will be
convenient (single call) while more complex
operations will be available to advanced
programmers

• Natural mapping to specific language OO features

7/13/2004 SC4DEVO

Office of Science

U.S. Department of Energy

SAGA directions

• Facilitate an easy transition from pre-Grid to
Grid architecture

• Allow scientists to incorporate grid
components when they want to, without
having to fully buy in to the Grid architecture

• Most common operations are file transfer and
remote job submission, but other more
sophisticated operations, including replica
directory management and service
composition will be targeted

• Explicitly support the continuum of tooling
(from GT2.x to Web Services to GT3.x/WS-
RF) with a single API (future proof!)

7/13/2004 SC4DEVO

Office of Science

U.S. Department of Energy Issues associated with WS to
WS-RF transitions

• Many more domain scientists are using WS than WS-
RF/Grid as the the interaction technology (typically
with nonstandard methods of state management)

• To use Globus functionality, WS-RF conventions for
managing and interacting with stateful resources
must be used

• pyGridware (through ZSI) supports both plain WS
and WS-RF

• Using SAGA and pyGridware (or other Grid
implementations) may reduce the effort barrier
associated with refactoring WS codes to support WS-
RF features

7/13/2004 SC4DEVO

Office of Science

U.S. Department of Energy

Visual programming for workflow
composition

7/13/2004 SC4DEVO

Office of Science

U.S. Department of Energy Molecular simulation
workflow

7/13/2004 SC4DEVO

Office of Science

U.S. Department of Energy

Visual Programming

• The previous example was implemented using a hand-built
Python script which required significant operator interaction

• Instead, users will compose workflows visually; by dragging and
dropping
– nodes that refer to published web and grid services
– nodes that perform minor business logic implemented on the local

machine
– form nodes that are used to populate instances of WSDL types

• A Consumer node’s input ports can only be attached to a
producer’s output which emit the appropriate WSDL type
(sufficiently complex nodes can use introspection to deal with
wildcard types)

• We are specifically targeting this technology at two groups
– Web/grid service software developers who want people to reuse

their components
– Application domain scientists who don’t want to develop web or grid

services but want to reuse components in their own workflows

7/13/2004 SC4DEVO

Office of Science

U.S. Department of Energy

VIPER- Visual Programming in Python

• We were inspired by VIPER, a visual
programming environment written by Michel
Sanner

• VIPER is used to compose networks of
Python scripts for molecular data processing
and visualization

• Data “flows” from parent nodes to children
node as it becomes available; changing data
at a particular location in the tree only causes
children to be recomputed

7/13/2004 SC4DEVO

Office of Science

U.S. Department of Energy

7/13/2004 SC4DEVO

Office of Science

U.S. Department of Energy Grid Visual Workflow Environment
(VIPUS)

• We began by adding pyGlobus nodes (file transfer,
remote job submission) to VIPER; for example, a file
selection dialog can be replaced by a file transfer
dialog so a network can access remote data

• Support for advanced grid services, complex
workflows (control flow like loops and conditionals)
and multiple language support required a new design
oriented around web services

• The user interface allows users to compose new
types and services visually (type editor), write code
for local nodes (code editor), and generate proxy
nodes from remote web services (web service
browser).

• Condor’s DAGMAN is used to execute the graphical
workflow, but we plan to support multiple DAG
execution mechanisms.

7/13/2004 SC4DEVO

Office of Science

U.S. Department of Energy

Acknowledgements

• The Python Grid Project is funded by the U.S.
Department of Energy Office of Science

• Thanks to the Globus Project
• More information can be found at

– http://dsd.lbl.gov/gtg/projects/pyGlobus/
– http://dsd.lbl.gov/gtg/projects/pyGridWare/
– https://forge.gridforum.org/projects/saga-rg/

• Bug submission
– http://dsd.lbl.gov/bugzilla/

• Email:
– krjackson@lbl.gov
– python-discuss@globus.org

	Simplified Grid Application �Development in Python
	Overview
	Globus Project™
	Globus Project™
	Python Grid Project
	Python Grid Project Goals
	Why Python?
	Pre-Web Services Python Grid Toolkit
	pyGlobus Technical Approach
	pyGlobus Technical Approach
	Architecture
	pyGlobus Components
	pyGlobus Components
	C Submission example
	Python Job Submission Example
	Visual Workflow Job Submission
	pyGlobus Status
	Future Plans
	Python Web and Grid Services Support
	Grid Evolution
	Grid Evolution
	pyGridWare
	pyGridWare Client Bindings
	pyGridWare Web and Grid Services Server-Side Support
	Current Status
	Future Plans
	SAGA (Simplified API For Grid Applications)
	GGF SAGA Research Group
	SAGA directions
	Issues associated with WS to WS-RF transitions
	Visual programming for workflow composition
	Molecular simulation workflow
	Visual Programming
	VIPER- Visual Programming in Python
	Grid Visual Workflow Environment (VIPUS)
	Acknowledgements

