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1 Introduction

White dwarfs are the second most common type of star in the Galaxy, and represent the end
stage of evolution for around 97% of all stars. Only those with masses greater than ∼ 8M⊙ will
avoid this fate, and post nuclear-burning will become either neutron stars or black holes. Now
devoid of the nuclear energy sources that drive the evolution of their progenitor stars, white
dwarfs shine at the expense of their residual thermal energy. It takes many billions of years
for this heat to radiate away into space, and as such white dwarfs contain an observable fossil
record of star formation processes in the history of the Galaxy.

1.1 Discovery

The first two white dwarfs to be discovered were 40 Eridani B and Sirius B. Observations
revealed these stars to be of a type fundamentally different to the ‘ordinary’ stars, and over
several decades at the start of the twentieth century the theory of stellar structure was revised
to incorporate this new class of star.

In particular, parallax measurements of 40 Eridani B showed it to be many magnitudes
fainter than other stars of it’s spectral type (figure 1). The existence of Sirius B was inferred
from it’s gravitational influence on it’s companion, Sirius A. By analysis of the orbital dynamics,
and an early measurement of gravitational redshift, it’s mass could be measured. The observed
mass and size of these stars implied a density several thousand times greater than anything
observed before in nature, and the behaviour of material under these conditions was not well
studied.

Figure 1: An early (1914) HR diagram showing 40 Eridani B at bottom left.
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1.2 Survey Techniques

White dwarfs are typically around 10 magnitudes fainter than main sequence stars of the same
colour. As such, they are observable only relatively close to the sun, and therefore exhibit
large proper motions. This fact has historically been used to conduct surveys for white dwarfs
through the use of the reduced proper motion statistic H (figure 2) which combines apparent
magnitude in some band (mB) and proper motion (µ) to estimate the intrinsic magnitude of
stars:

HB = mB + 5 log(µ) + 5

In this way Willem Luyten produced some of the first large proper motion catalogues con-
taining ∼ 3000 white dwarfs. Proper motions were detected and measured from photographic
plates by eye using large ‘blink comparators’, which inevitably led to incompleteness problems
due to objects being missed. Modern surveys avoid this by using automated search algorithms
to pair up stars between observations taken at different epochs.

Figure 2: A reduced proper motion diagram showing the loci of various Galactic stellar popu-
lations and types.

Spectroscopic surveys can also reveal white dwarfs through their characteristically pressure-
broadened absorption lines. For example, although SDSS primarily targets extragalactic ob-
jects, a large sample of white dwarfs has been spectroscopically observed due to their photo-
metric colours merging with QSOs.
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2 Sirius B - Internal Properties

Taking up to date values for the mass, radius and temperature of Sirius B from Holberg et
al. [1998] we can infer some basic properties of the interior of white dwarf stars in general. It
should be noted that Sirius B is not particularly representative of white dwarf stars, being of
considerably higher mass, and is chosen more for historical context.

2.1 Pressure Ionisation

Holberg et al. quote a mass of M ∼ 1.05M⊙ and radius of R ∼ 0.0084R⊙, which leads to a
mean density of ∼ 2.5 × 109 kg m−3. Assuming an internal composition of pure carbon, this
leads to a mean nuclear separation of ∼ 2 × 1012 m. By contrast, the Bohr radius of a carbon
ion with only one remaining electron is ∼ 8×1012 m, and the interior must be entirely pressure

ionised.

2.2 Electron Degeneracy

Holberg et al. derive an effective temperature of T ∼ 25000K for Sirius B. If we use this
as a first order estimate of the interior temperature, we calculate a de Broglie wavelength of
∼ 6.85 × 10−10 m for the (free) electrons, several orders or magnitude greater than the mean
separation of 9.85 × 10−13 m. Therefore, any attempt to understand the internal structure
must involve a quantum mechanical explanation. By contrast, the de Broglie wavelength of
the ions, ∼ 4.63 × 10−12 m, is only about twice the average separation. Therefore, to a good
approximation we expect the ions to behave as an ideal classical gas.

3 The Equation of State for an Electron Gas

The equation of state for the degenerate interior of white dwarf stars can be derived from first
principles by first considering the density of quantum states g(p), defined in phase space as

g(p) dpdV =
8π

h3
p2 dpdV.

This includes the degeneracy factor of two for electrons of opposite spin states. As electrons
fermions, the distribution of particles amongst the quantum states obeys Fermi-Dirac statistics,
which states that the average occuption of a state of energy ǫ is given by

f(ǫ) =
1

exp[ ǫ−µ
kT

] + 1
.

Microscopically, pressure is defined as the flux of momentum through a unit surface. If
we consider a surface element of area dσ with normal n, we can derive an expression for the
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Figure 3: The equation of state is derived by considering the flux of momentum across surface element

dσ in the direction n

pressure by considering how many electrons pass through it per second into an element of solid
angle dΩ, in the direction s, in the momentum range p → p+dp (figure 3).

The number density of states in the vicinity of dσ is given by g(p)dp, and these are occupied
according to f(ǫ). Each electron carries a momentum equal to p cos(θ) in the direction n, and
sees a projected surface area of cos(θ)dσ. This is multiplied by the velocity of the electrons
corresponding to the given momentum, expressed for now as v(p). As the distribution function
is isotropic, the fraction of electrons passing into dΩ is equal to dΩ

4π
. Finally, to get the pressure

on the surface, we divide out dσ and integrate over one hemisphere and all momentum states:

P =
∫ π

2

θ=0

∫ 2π

φ=0

∫

∞

p=0

8πp3

h3

1

exp[ ǫ(p)−µ

kT
] + 1

cos(θ)2v(p)dp
dΩ

4π
.

Integrating out the angular dependancy leaves:

P =
4π

3h3

∫

∞

p=0

p3

exp[ ǫ(p)−µ

kT
] + 1

v(p)dp.

where v(p) and ǫ(p) are the relativistic expressions for the velocity and energy of a given
momentum state, respectively. µ has dimensions of energy and is called the chemical potential.
In this context it is related to the degree to which the interior is degenerate. This formula
cannot be solved analytically for all possible conditions in the white dwarf interior. However,
there are several limiting cases in which this is possible, and these can be used to demonstrate
certain properties that extend into the analytically intractible regimes.

3.1 Fully Degenerate Configurations

When all quantum states are occupied up to some momentum, and none above this, the electron
gas is said to be fully degenerate. The momentum of the highest occupied states is denoted pf

and called the Fermi momentum, with the corresponding Fermi energy ǫf . This is equivalent
to assuming a temperature of zero for the interior. This is obviously unphysical, and any



3 THE EQUATION OF STATE FOR AN ELECTRON GAS 6

thermal energy will promote electrons to higher momentum states. In reality, the interior of
a white dwarf is only partially degenerate, and hydrostatic equilibrium is maintained by a
complex mixture of degeneracy pressure and a small but finite thermal pressure. However,
this assumption greatly simplifies the solution to the equation of state, as in this regime the
distribution function takes the following form:

f(ǫ) =

{

1 : ǫ ≤ ǫf

0 : ǫ > ǫf

The pressure integral now becomes:

P =
4π

3h3

∫ pf

p=0
p3v(p)dp.

For the velocity, we rearrange the relativistic expression for momentum p = γ(v)mv to
obtain

v(p) = c

p
mec

√

( p

mec
)2 + 1

which, when substituted into the above formula, allows us to write for the equation of state:

P =
4πm4

ec
5

3h3

∫ x

ξ=0

ξ4

√
1 + ξ2

dξ

where we have used the substitutions ξ = p
mec

and x =
pf

mec
. x is called the relativity parameter

and appears widely in degeneracy pressure calculations. This integral has the following solution:

P =
πm4

ec
5

6h3

[

x(2x2 − 3)
√

(1 + x2) + 3 sinh−1(x)
]

.

This is the general formula for the pressure at all values of the relativity parameter, for the
fully degenerate case. Now, the number density of electrons can be expressed as a function of
the Fermi momentum pf by integrating the density of states in phase space over all possible
values of the momentum (p = 0 → pf ). This gives:

ne =
8π

h3

∫ pf

p=0
p2dp =

8π

3h3
p3

f

which can be expressed in terms of x as

ne =
8πm3

ec
3

3h3
x3

which allows one to express the pressure directly in terms of the number density of electrons.
Before making this substitution, we may further simplify the equation of state by considering as
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two limiting cases the regimes of non-relativistic degeneracy (x → 0) and relativistic degeneracy

(x → ∞). The parameter x is a measure of the momentum of the electrons in the highest
populated energy states, and thus measures the importance of relativistic effects. In these two
cases the general equation of state reduces to the following forms:

P →















8πm4
ec5

30h3 x5 x → 0

πm4
ec5

3h3 x4 x → ∞

Now substituting in the number density of electrons:

P =
1

40

(

3

π

)

2

3 h2

me

n
5

3
e

P =
1

16

(

3

π

)

1

3

hcn
4

3
e

These expressions give approximations to the equation of state for completely degenerate
stellar configurations, in the limiting regimes of non-relativistic and relativistic degeneracy.

3.2 Consequences for the Mass of White Dwarfs

Putting the equation of state for the non-relativistic, fully degenerate white dwarf interior into
the equation for hydrostatic equilibrium yields the following approximate result:

P ∼
(

M2

R4

)

∼
(

M

R3

)

5

3

which has the solution:

R ∼
1

M
1

3

.

Thus more massive white dwarfs are expected to be smaller, a feature not observed in
main sequence stars. Also, the relativistic ‘softening’ of the equation of state has profound
implications for the maximum mass of white dwarf stars, as first noted by Chandrasekhar in
1931. Specifically, the reduction in stiffness gives rise to a limiting mass for highly relativistic
white dwarfs. Repeating the above argument for the relativistic-degenerate configuration gives
the relation:

P ∼
(

M2

R4

)

∼
(

M

R3

)

4

3

M
6

3

R4
∼

M
4

3

R4
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R cancels out, implying the existence of a unique mass for relativistic white dwarfs, above
which hydrostatic equilibrium cannot be maintained and the star starts to collapse. This unique
mass is called the Chandrasekhar Mass, and has the definition given by Chandrasekhar [1939]:

MCh = 5.75µ−2
e M⊙

where µe is the number of nucleons per electron, and is a measure of the metallicity of the
interior. MCh has the value 1.44M⊙ for a composition of pure He4.

3.3 Thermal and Mechanical Properties Decoupled

It was shown earlier that the ions present in the interior of the star behave, to a good ap-
proximation, like an ideal classical gas, and the electrons as an ideal Fermi gas. How does
the pressure in each component contribute to hydrostatic support? Using data for Sirius B
discussed in section 2, we can estimate the pressure of the ions and electrons separately. The

equation of state for the ions is Pi = nikBT , and for the electrons Pe = 1
40

(

3
π

)
2

3 h2

me
n

5

3
e , where

ne = 12ni for an internal composition of pure carbon. Putting the numbers in leads to the
following ratio for the relative magnitude of the pressures:

Pe

Pi

= 2.148 × 10−18n
2

3

i .

Given the mean density of Sirius B, one calculates an ion number density of ni = 1.25×1035m−3.
Putting this into the above ratio gives:

Pe

Pi

= 5.37 × 105.

Thus the mechanical properties of white dwarfs are completely dominated by the degenerate
electron gas.

The thermal properties can be explored by considering the heat capacities of the two compo-
nents, defined at constant volume as Cv = ∂U

∂T

∣

∣

∣

v
. The internal energy of both the ideal classical

gas of ions and ideal Fermi gas of electrons satisfies U ∝ P . However, the equation of state for
the electrons has no T dependency in the fully degenerate limit, and the total combined heat
capacity of the interior is found to be:

Cv =
∂Ui

∂T

∣

∣

∣

∣

∣

v

+
∂Ue

∂T

∣

∣

∣

∣

∣

v

=
3

2
nik

The heat capacity of the degenerate electrons is equal to zero; the thermal energy content
of the star is dominated by the ions.
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