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Solution set 6

(1) This question is easier than it looks, since the main results of importance are given,
and don’t need to be proved. This means that the explicit expression for the operator
a is a red herring: it is never needed.

For the commutator [a, H], write it in full in terms of a and a':
aH — Ha = hw(a‘aa + a/2) — hw(aata 4 a/2) = hwla®, d] a.

Using [af,a] = —1, this is —hwa. The commutator [af, H] is obtained similarly.

Now consider an eigenstate Hyp = Et (actually, there will be a set ¢; with
energies E;), and think about a'¢: is it possible that this is another of the energy
eigenstates? If so, we would have

H(a%y) = B(a')),

where the eigenvalue 3 would be the new energy. Now, Ha't) = [H,a'|yp+aHe). Using
H+y = Ev and the negative of the above commutator, this is of the required form, and
B = E + hw. Thus, a' raises the state 1. The proof that a lowers it is very similar.

Now, the energy eigenvalue must be > 0. We can either argue physically: the
potential V = Kz? is positive, and the kinetic energy must be positive also, so negative
energy makes no sense (it would be OK if the potential was negative, like the electrostatic
potential). If this seems too classical an argument, consider an eigenstate Hiyp = E, for
which E = (p|H|¢)). Putting in the definition of H, this says E = hw((s)|aTa|y) +1/2).
But (|ataly) = (avh]ay) (because operators act to the left when you conjugate them).
This matrix element is just [ |a|?, so is > 0.

So, there must exist a ground state 1, that can’t be lowered, in which case
arh, = 0. The trick then is to say that therefore also hwa'ay, = 0. The operator is
H — hw/2, so E; = hw/2. The other energy levels are obtained from %, by repeated
application of a'; hence E = (n + 1/2)hw.



(2)

(a) The definition of the ground state, ug(z), is that it cannot be lowered.
Therefore, trying to lower it gives zero probability for finding the particle in such a
lowered state — i.e. zero wavefunction. Therefore aug = 0. Unlike the Schrodinger
equation, this is a first-order differential equation:

(a;u + oz_la%> ug = 0.

(putting in the definition of p). This is simply integrated:

d
M _ _\2de = ug = Aexp(—a’z?/2),
Uop

putting in the boundary condition that ug(cc) = 0 for normalization.

To normalize the wavefunction, we need

|A|2/ exp(—a’z?)dr = 1

— 0

Now, [exp(—y?)dy = /7 [to prove this, square the integral, and change variables from
(z,y) to polars (r, 6)]. Therefore
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(b) The state u;(x) comes from raising ug once: ui(z) o< a‘ug(z) (not equal: the
normalization is affected). In other words:

up(x) o <oz.7; —at ai) ug = 2az exp(—a’z?/2) = Brexp(—a’z?/2),
T

where B is a normalization constant.
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We therefore need to differentiate ug twice, which gives ujj = —a?ug + a*x?ug. This
cancels the quadratic term, giving

hw.

a’h?

HUOZ

Uug.

Hence the energy eigenvalue is E = a?h®/2m = hw/2, as required.



