Quantum Mechanics 3 2001/2002

Solution set 3

(1) This is mainly bookwork:
(a) Equation (fifi) in the notes defines OF.

(b) A Hermitian operator has Of = O. Answers in terms of matrices would get
marks — but the question wanted you to use the general operator definition.

(c¢) Again, this is in the notes (equations 82 & 83). The key step is to be able
to say that the ‘boundary term’ [)f1)2] = 0. We haven’t been explicit about the range
of integration, but it is always all space, so we need [t)]12]* 0. The boundary term
vanishes because ¥y and 5 must vanish at infinity. To see this, assume the opposite:
that they tend to some constant. [ |i|*dz would then diverge and the wavefunction
wouldn’t be normalizable. So, (d/dz)’ = —(d/dz). Note that this minus sign gets lost
if you do the same exercise for i(d/dz). Thus, the momentum operator is Hermitian.

(d) This is a bit tedious, but you just need to keep using the definition of the
conjugate:

( [ iy, dV)* — [wiamytvav.

Now, recognize that B, is just some other function, which we can call v3. Using the

definition,
( / ¥y Abs dv> = / Y3 ATy dv.

Now do the same thing again, with ATy, = 14, and write

[ v av - (/ Vis dV)*

(because t3 and 1, commute, and taking a * outside the whole integral). Re-using
3 = By brings in B, and reordering terms brings Bf A" together in the middle.



(2) Sketch ¢: the question says ¢ = A (some constant) in the left half of the well. It
also says the particle is placed in the left side, which must mean ¢» = 0 in the right half.
Normalization requires foa/2 |A|*dz = 1, or |A| = 1/2/a. You may worry that 1) doesn’t
satisfy the boundary conditions, which require ¢»(0) = 0. This just means ¢ is in the
form of a rectangular ‘top hat’ that falls to zero at + = 0 and z = a/2.

Now expand this funny state in the states of well-defined energy: o(z) =
Y. a;jui(z). The probability of being in the ground state (i = 1) is |a1|* (see discussion
at the top of p24 of the notes), so we need a;. The coeflicients are extracted using
orthonormality of the u;, by multiplying the basic expansion by U} and integrating:

upy = Z auiu; = /uZL/J dV = Zai /uZul dV = ay.

The last step arises through orthonormality: [wju; dV is unity when ¢ = k and zero
otherwise.

Putting in the expressions for u; and @, this gives a; = (2/ak)[1 — cos(ka/2)],
where ka/2 = nn/2. For n = 1, this is just a; = 2/7, so the required probability is
4/7? ~ 0.4053.

(3) This question actually requires very little work, beyond a familiarity with the
solution of the quantum harmonic oscillator. For z > 0, the given potential is identical
to that of the harmonic oscillator. Therefore, the general solution of the Schrodinger
equation for x > 0 is the same as that for the harmonic oscillator. In the notes, we
showed that this was 1(z) = F(2)exp(—2%/2), where z = z/(h/mw)'/?. We looked for
a power-series solution for the unknown function F(z) and showed that it must be a
finite polynomial, otherwise the wave function would diverge as * — co. The recurrence
relation for the coefficients of the polynomial showed that the functions F'(z) are either
odd or even, with energy eigenvalues E,, = (n + 1/2)hw, and that F(z) is even if n is
even and odd if n is odd.

All of this reasoning applies identically to the z > 0 region of the potential given
in the question. However, because the potential is infinite for x < 0, there is an extra
boundary condition to satisfy: ¢(xz) = 0 at * = 0. This is true for only half of the
allowed states for the harmonic oscillator: the odd ones. Therefore, the allowed energy
levels are E,, = (n 4+ 1/2)hw, with n = 1,3,5,... Another way of writing this is to put
n=1+4+2m: E, = (2m + 3/2)hw, with m =0,1,2,3, ...



